Abstract

The intrinsic bistable terahertz response of intersubband plasmons in wide n-type δ-doped quantum wells is predicted to be enhanced by a resonant Fabry–Perot cavity. With a simple low-Q resonator, the threshold for bistability is decreased by a factor of 2–3 compared with that for bare multiple quantum wells.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotta, and F. Rossi, Nature 417, 156 (2002).
    [CrossRef]
  2. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, and T. B. Norris, Appl. Phys. Lett. 76, 18 (2000).
  3. N. Peyghambarian, S. W. Koch, and A. Mysyriwicz, Introduction to Semiconductor Optics (Prentice-Hall, Englewood Cliffs, N.J., 1993).
  4. J. Khurgin, Appl. Phys. Lett. 54, 2589 (1989).
    [CrossRef]
  5. M. Seto and M. Helm, Appl. Phys. Lett. 60, 859 (1992).
    [CrossRef]
  6. M. Zalużny, J. Appl. Phys. 74, 4716 (1993).
    [CrossRef]
  7. M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. George, Phys. Rev. B 48, 10,966 (1993).
    [CrossRef]
  8. A. A. Batista, P. I. Tamborenea, B. Birnir, M. S. Sherwin, and D. S. Citrin, Phys. Rev. B 66, 195325 (2002).
    [CrossRef]

2002 (2)

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotta, and F. Rossi, Nature 417, 156 (2002).
[CrossRef]

A. A. Batista, P. I. Tamborenea, B. Birnir, M. S. Sherwin, and D. S. Citrin, Phys. Rev. B 66, 195325 (2002).
[CrossRef]

2000 (1)

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, and T. B. Norris, Appl. Phys. Lett. 76, 18 (2000).

1993 (2)

M. Zalużny, J. Appl. Phys. 74, 4716 (1993).
[CrossRef]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. George, Phys. Rev. B 48, 10,966 (1993).
[CrossRef]

1992 (1)

M. Seto and M. Helm, Appl. Phys. Lett. 60, 859 (1992).
[CrossRef]

1989 (1)

J. Khurgin, Appl. Phys. Lett. 54, 2589 (1989).
[CrossRef]

Batista, A. A.

A. A. Batista, P. I. Tamborenea, B. Birnir, M. S. Sherwin, and D. S. Citrin, Phys. Rev. B 66, 195325 (2002).
[CrossRef]

Beere, H. E.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotta, and F. Rossi, Nature 417, 156 (2002).
[CrossRef]

Beltram, F.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotta, and F. Rossi, Nature 417, 156 (2002).
[CrossRef]

Birnir, B.

A. A. Batista, P. I. Tamborenea, B. Birnir, M. S. Sherwin, and D. S. Citrin, Phys. Rev. B 66, 195325 (2002).
[CrossRef]

Citrin, D. S.

A. A. Batista, P. I. Tamborenea, B. Birnir, M. S. Sherwin, and D. S. Citrin, Phys. Rev. B 66, 195325 (2002).
[CrossRef]

Davies, A. G.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotta, and F. Rossi, Nature 417, 156 (2002).
[CrossRef]

George, T.

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. George, Phys. Rev. B 48, 10,966 (1993).
[CrossRef]

Helm, M.

M. Seto and M. Helm, Appl. Phys. Lett. 60, 859 (1992).
[CrossRef]

Iotta, R. C.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotta, and F. Rossi, Nature 417, 156 (2002).
[CrossRef]

Khurgin, J.

J. Khurgin, Appl. Phys. Lett. 54, 2589 (1989).
[CrossRef]

Koch, S. W.

N. Peyghambarian, S. W. Koch, and A. Mysyriwicz, Introduction to Semiconductor Optics (Prentice-Hall, Englewood Cliffs, N.J., 1993).

Kohler, R.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotta, and F. Rossi, Nature 417, 156 (2002).
[CrossRef]

Lee, Y.-S.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, and T. B. Norris, Appl. Phys. Lett. 76, 18 (2000).

Linfield, E. H.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotta, and F. Rossi, Nature 417, 156 (2002).
[CrossRef]

Meade, T.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, and T. B. Norris, Appl. Phys. Lett. 76, 18 (2000).

Muratov, L. S.

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. George, Phys. Rev. B 48, 10,966 (1993).
[CrossRef]

Mysyriwicz, A.

N. Peyghambarian, S. W. Koch, and A. Mysyriwicz, Introduction to Semiconductor Optics (Prentice-Hall, Englewood Cliffs, N.J., 1993).

Norris, T. B.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, and T. B. Norris, Appl. Phys. Lett. 76, 18 (2000).

Pandey, L. N.

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. George, Phys. Rev. B 48, 10,966 (1993).
[CrossRef]

Perlin, V.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, and T. B. Norris, Appl. Phys. Lett. 76, 18 (2000).

Peyghambarian, N.

N. Peyghambarian, S. W. Koch, and A. Mysyriwicz, Introduction to Semiconductor Optics (Prentice-Hall, Englewood Cliffs, N.J., 1993).

Ritchie, D. A.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotta, and F. Rossi, Nature 417, 156 (2002).
[CrossRef]

Rossi, F.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotta, and F. Rossi, Nature 417, 156 (2002).
[CrossRef]

Seto, M.

M. Seto and M. Helm, Appl. Phys. Lett. 60, 859 (1992).
[CrossRef]

Sherwin, M. S.

A. A. Batista, P. I. Tamborenea, B. Birnir, M. S. Sherwin, and D. S. Citrin, Phys. Rev. B 66, 195325 (2002).
[CrossRef]

Stockman, M. I.

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. George, Phys. Rev. B 48, 10,966 (1993).
[CrossRef]

Tamborenea, P. I.

A. A. Batista, P. I. Tamborenea, B. Birnir, M. S. Sherwin, and D. S. Citrin, Phys. Rev. B 66, 195325 (2002).
[CrossRef]

Tredicucci, A.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotta, and F. Rossi, Nature 417, 156 (2002).
[CrossRef]

Winful, H.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, and T. B. Norris, Appl. Phys. Lett. 76, 18 (2000).

Zaluzny, M.

M. Zalużny, J. Appl. Phys. 74, 4716 (1993).
[CrossRef]

Appl. Phys. Lett. (3)

J. Khurgin, Appl. Phys. Lett. 54, 2589 (1989).
[CrossRef]

M. Seto and M. Helm, Appl. Phys. Lett. 60, 859 (1992).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, and T. B. Norris, Appl. Phys. Lett. 76, 18 (2000).

J. Appl. Phys. (1)

M. Zalużny, J. Appl. Phys. 74, 4716 (1993).
[CrossRef]

Nature (1)

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotta, and F. Rossi, Nature 417, 156 (2002).
[CrossRef]

Phys. Rev. B (2)

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. George, Phys. Rev. B 48, 10,966 (1993).
[CrossRef]

A. A. Batista, P. I. Tamborenea, B. Birnir, M. S. Sherwin, and D. S. Citrin, Phys. Rev. B 66, 195325 (2002).
[CrossRef]

Other (1)

N. Peyghambarian, S. W. Koch, and A. Mysyriwicz, Introduction to Semiconductor Optics (Prentice-Hall, Englewood Cliffs, N.J., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Resonator with embedded QWs. The QWs lie in a MQW with the growth direction parallel to the dielectric interfaces of the slabs. E1 and E1r are the electric-field amplitudes to the left of the MQW, and E2 and E2r are the amplitudes to the right.

Fig. 2
Fig. 2

(a) Comparison of field amplitudes at the MQW, showing the bare MQW (thicker curves) and the MQW in the FP cavity (thinner curves). (b) Comparison of the transmittivities of the bare MQW (thicker curves) and the MQW in the FP cavity (thinner curves). (c) Comparison of the reflectivities. For all frames, Ne=1.5×1015 cm-3, LQW=20 µm, and the input field amplitude is 70 V/cm. The cavity has parameters L=L1+LQW+L2=92 µm, with L1=L2=36 µm and n1=3.

Fig. 3
Fig. 3

Bistability in the transmittance as a function of drive frequency ω normalized to intersubband splitting ω10 and input field amplitude E0. The THz active region has thickness LQW=20 µm and Ne=1.5×1015 cm-3. (a) Region of bistability for a MQW without the FP cavity. (b) Region of bistability for a MQW with the FP cavity. Cavity length, L=92 µm (which is approximately half of the THz wavelength near ω/ω10=1.2); L1=L2=36 µm.

Fig. 4
Fig. 4

Bistability in the transmittance. The THz active region has thickness LQW=20 µm and Ne=1.0×1016 cm-3. (a) Region of bistability for a MQW without the FP cavity. (b) Region of bistability for a MQW with the FP cavity. Cavity length L=92 µm (which is approximately half of the THz wavelength near ω/ω10=1.2); L1=L2=36 µm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

tE00=Mw,n1expik0L200exp-ik0L2×MQWLQW,nωexpik0L100exp-ik0L1×Mw,n1E0rE0,
Mw,n1=14n0n14n0n1 cos k1w+2in02+n12sin k1w2in12-n02sin k1w,-2in12-n02sin k1w4n0n1 cos k1w-2in02+n12sin k1w,
χω=Neμ102ωiΔ/2γ2+iδ¯-α1+β/2Δ-Δ0/2,
δ¯-y2+γ22y+ε02γ2γ1y+αΔ0ε02γ22γ11+β2=0,

Metrics