Abstract

We demonstrate implementation of an all-fiber Mach–Zehnder interferometer formed in a photonic crystal fiber (PCF). We formed the all-PCF Mach–Zehnder interferometer by mechanically inducing two identical long-period fiber gratings (LPGs) in the PCF. The spectral properties of a LPG and a LPG pair were investigated. The interference fringe formed within the stop band of the LPG pair varied with the period and the strength of the gratings, and the fringe spacing was decreased with increasing grating separation. From the fringe spacing measurement the differential effective group index of the PCF was calculated to be Δm2.8×10-3.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription