Abstract

We propose a flexible method for fabricating complex fiber grating structures based on sequential writing for fiber gratings with polarization control of the UV source beam. Pure apodized as well as arbitrary phase-shifted fiber Bragg gratings (FBGs) can be fabricated in a single scan. Experimental examples of raised-cos2 apodized and dispersionless FBG filters are given to demonstrate the feasibility of this method.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, and W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [CrossRef] [PubMed]
  2. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
    [CrossRef]
  3. W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, Opt. Lett. 20, 2051 (1995).
    [CrossRef] [PubMed]
  4. J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, Electron. Lett. 31, 222 (1995).
    [CrossRef]
  5. C. Yang and Y. Lai, Electron. Lett. 36, 655 (2000).
    [CrossRef]
  6. J. B. Jensen, N. Plougmann, H.-J. Deyerl, P. Varming, J. Hubner, and M. Kristensen, Opt. Lett. 27, 1004 (2002).
    [CrossRef]
  7. L. G. Sheu, K. P. Chuang, and Y. Lai, IEEE Photon. Technol. Lett. 15, 939 (2003).
    [CrossRef]
  8. J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
    [CrossRef]
  9. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, New York, 1992).
  10. T. Erdogan and V. Mizrahi, J. Opt. Soc. Am. B 11, 2100 (1994).
    [CrossRef]
  11. M. Schiano and G. Zaffiro, in Proceedings of the 24th European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 403–404.

2003 (1)

L. G. Sheu, K. P. Chuang, and Y. Lai, IEEE Photon. Technol. Lett. 15, 939 (2003).
[CrossRef]

2002 (1)

2001 (1)

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

2000 (1)

C. Yang and Y. Lai, Electron. Lett. 36, 655 (2000).
[CrossRef]

1995 (2)

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, Opt. Lett. 20, 2051 (1995).
[CrossRef] [PubMed]

J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, Electron. Lett. 31, 222 (1995).
[CrossRef]

1994 (1)

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

1989 (1)

Albert, J.

J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, Electron. Lett. 31, 222 (1995).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Barcelos, S.

Bilodeau, F.

J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, Electron. Lett. 31, 222 (1995).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Chuang, K. P.

L. G. Sheu, K. P. Chuang, and Y. Lai, IEEE Photon. Technol. Lett. 15, 939 (2003).
[CrossRef]

Cole, M. J.

Deyerl, H.-J.

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

T. Erdogan and V. Mizrahi, J. Opt. Soc. Am. B 11, 2100 (1994).
[CrossRef]

Erickson, L. E.

J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, Electron. Lett. 31, 222 (1995).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, New York, 1992).

Glenn, W. H.

Hill, K. O.

J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, Electron. Lett. 31, 222 (1995).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Hubner, J.

Jensen, J. B.

Johnson, D. C.

J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, Electron. Lett. 31, 222 (1995).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Kristensen, M.

Lai, Y.

L. G. Sheu, K. P. Chuang, and Y. Lai, IEEE Photon. Technol. Lett. 15, 939 (2003).
[CrossRef]

C. Yang and Y. Lai, Electron. Lett. 36, 655 (2000).
[CrossRef]

Laming, R. I.

Loh, W. H.

Malo, B.

J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, Electron. Lett. 31, 222 (1995).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Meltz, G.

Mizrahi, V.

Morey, W. W.

Plougmann, N.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, New York, 1992).

Schiano, M.

M. Schiano and G. Zaffiro, in Proceedings of the 24th European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 403–404.

Sheu, L. G.

L. G. Sheu, K. P. Chuang, and Y. Lai, IEEE Photon. Technol. Lett. 15, 939 (2003).
[CrossRef]

Skaar, J.

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, New York, 1992).

Theriault, S.

J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, Electron. Lett. 31, 222 (1995).
[CrossRef]

Varming, P.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, New York, 1992).

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

Yang, C.

C. Yang and Y. Lai, Electron. Lett. 36, 655 (2000).
[CrossRef]

Zaffiro, G.

M. Schiano and G. Zaffiro, in Proceedings of the 24th European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 403–404.

Zervas, M. N.

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Electron. Lett. (2)

J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, Electron. Lett. 31, 222 (1995).
[CrossRef]

C. Yang and Y. Lai, Electron. Lett. 36, 655 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. G. Sheu, K. P. Chuang, and Y. Lai, IEEE Photon. Technol. Lett. 15, 939 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Other (2)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, New York, 1992).

M. Schiano and G. Zaffiro, in Proceedings of the 24th European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 403–404.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for writing complex fiber grating structures: HWP, half-wave plate; PBS, polarization beam splitter; A, optical attenuator; Ms, reflecting mirrors; PM, phase mask; s, f, slow and fast axes, respectively, of the half-wave plate.

Fig. 2
Fig. 2

Reflection spectra of a pure apodized FBG and an ordinary apodized FBG with nonconstant dc index: Exp., experimental; Sim., simulated; w/o, without.

Fig. 3
Fig. 3

Normalized refractive-index profile and phase of the dispersionless FBG that we designed.

Fig. 4
Fig. 4

(a) Measured reflection and time delay spectra of the dispersionless FBG and (b) the simulated reflection and time delay spectra of the standard Gaussian-apodized FBG.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δnz=mηSz-zm1+cos22θmcos2πzΛ+ϕm,
σCm=Aidz-mCm exp-z-zm2/ws22dz.
σCm=-2Aidz-mAmzexp-z-zm2wsdz=0.

Metrics