Abstract

The mode-coupling properties of tunable long-period fiber gratings (LPGs) formed in photonic crystal fibers (PCFs) are presented. The mode coupling from the fundamental core mode to a cladding mode of a PCF is obtained by use of periodic mechanical pressure. The strength and the wavelength of the resonant peak are tuned by adjusting the grating period and the pressure applied on the PCF. Contrary to the conventional fiber case, the resonant wavelength of the PCF LPG is decreased by increasing the periodicity.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Birks, D. Mogilevtsev, J. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
    [CrossRef]
  2. T. Birks, J. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  3. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, Opt. Lett. 24, 1460 (1999).
    [CrossRef]
  4. B. Eggleton, P. Westbrook, C. White, C. Kerbage, R. Windeler, and G. Burdge, J. Lightwave Technol. 18, 1084 (2000).
    [CrossRef]
  5. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, Opt. Lett. 28, 233 (2003).
    [CrossRef] [PubMed]
  6. G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, Electron. Lett. 39, 349 (2003).
    [CrossRef]
  7. G. Kakarantzas, T. Birks, and P. St. J. Russell, Opt. Lett. 27, 1013 (2002).
    [CrossRef]
  8. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, Opt. Lett. 25, 1499 (2000).
    [CrossRef]
  9. K. S. Lee and J. Y. Cho, J. Opt. Soc. Am. A 19, 1621 (2002).
    [CrossRef]
  10. J. Y. Cho and K. S. Lee, Opt. Commun. 213, 281 (2002).
    [CrossRef]
  11. M. D. Nielsen, G. Vienne, and J. R. Folkenerg, Opt. Lett. 28, 236 (2003).
    [CrossRef] [PubMed]
  12. K. S. Lee and T. Erdogan, J. Opt. Soc. Am. A 18, 1176 (2001).
    [CrossRef]
  13. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U.-C. Paek, and G.-H. Yang, Opt. Lett. 27, 812 (2002).
    [CrossRef]

2003 (3)

2002 (4)

2001 (1)

2000 (2)

1999 (2)

T. Birks, D. Mogilevtsev, J. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, Opt. Lett. 24, 1460 (1999).
[CrossRef]

1997 (1)

Birks, T.

Birks, T. A.

Buckley, E.

Burdge, G.

Canning, J.

Cho, J. Y.

K. S. Lee and J. Y. Cho, J. Opt. Soc. Am. A 19, 1621 (2002).
[CrossRef]

J. Y. Cho and K. S. Lee, Opt. Commun. 213, 281 (2002).
[CrossRef]

Diez, A.

Eggleton, B.

Eggleton, B. J.

Eom, J. B.

Erdogan, T.

Fevrier, S.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, Electron. Lett. 39, 349 (2003).
[CrossRef]

Folkenerg, J. R.

Groothoff, N.

Humbert, G.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, Electron. Lett. 39, 349 (2003).
[CrossRef]

Kakarantzas, G.

Kerbage, C.

Kim, J.

Knight, J.

T. Birks, D. Mogilevtsev, J. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

T. Birks, J. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
[CrossRef] [PubMed]

Lee, B. H.

Lee, K. S.

Lyttikainen, K.

Malki, A.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, Electron. Lett. 39, 349 (2003).
[CrossRef]

Mangan, B. J.

Mogilevtsev, D.

T. Birks, D. Mogilevtsev, J. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

Moon, D. S.

Nielsen, M. D.

Paek, U.-C.

Pagnoux, D.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, Electron. Lett. 39, 349 (2003).
[CrossRef]

Reeves, W. H.

Roy, P.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, Electron. Lett. 39, 349 (2003).
[CrossRef]

Russell, P. St. J.

Spalter, S.

Strasser, T. A.

Vienne, G.

Westbrook, P.

Westbrook, P. S.

White, C.

Windeler, R.

Windeler, R. S.

Yang, G.-H.

Zagari, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical microscope image of the cleaved end of a PCF.

Fig. 2
Fig. 2

Transmission spectra of the PCF gratings (d=20 mm, Λ=600 µm) formed by periodic pressing with different line pressures: (a) P1=1 kN/m, P2=1.3 kN/m, P3=1.5 kN/m, P4=1.8 kN/m, and (b) P1=1 kN/m, P4=1.8 kN/m, P5=2.9 kN/m, P6=4.9 kN/m.

Fig. 3
Fig. 3

Resonant wavelengths measured at different grating periods. The resonant wavelength is decreased with the periodicity.

Fig. 4
Fig. 4

Experimental setup used to measure the near-field intensity pattern of the cladding mode coupled by the PCF LPG. GP, grooved plate; FP, flat plate; SMF, single-mode fiber; TLS, tunable laser source.

Fig. 5
Fig. 5

Near-field intensity patterns after the tunable PCF LPG observed at different pressures corresponding to (a) the case of no pressure and (b) P4 and (c) P5 of Fig. 2.

Metrics