Abstract

We report a new femtosecond time-resolved fluorescence spectrometer that enables us to observe fluorescence intensity as a time–wavelength two-dimensional image in a single measurement. This method utilizes a time-to-space conversion technique and fluorescence sum-frequency mixing with a femtosecond gate pulse. It provides a fluorescence image covering temporal and spectral spans of 2 ps and 60 nm, respectively. Calibration of the time and intensity axes of the image is made by use of a long-lived dye fluorescence. The two-dimensional fluorescence image of β-carotene obtained demonstrates the high potential of this method for quantitative studies of ultrafast excited-state dynamics.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Mahr and M. D. Hirsch, Opt. Commun. 13, 96 (1975).
    [CrossRef]
  2. J. Shah, IEEE J. Quantum Electron. QE-24, 276 (1988).
    [CrossRef]
  3. R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, Appl. Phys. Lett. 79, 566 (2001).
    [CrossRef]
  4. M. A. Duguay and J. W. Hansen, Opt. Commun. 1, 254 (1969).
    [CrossRef]
  5. J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, Phys. Rev. B 62, 10083 (2000).
    [CrossRef]
  6. S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, Rev. Sci. Instrum. 71, 3317 (2000).
    [CrossRef]
  7. B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, Appl. Phys. B 76, 809 (2003).
    [CrossRef]
  8. R. N. Gyuzalian, S. B. Sogomonian, and Z. G. Horvath, Opt. Commun. 29, 239 (1979).
    [CrossRef]
  9. R. J. Thrash, H. L. B. Fang, and G. E. Leroi, J. Chem. Phys. 67, 5930 (1977).
  10. A. P. Shreve, J. K. Trautman, T. G. Owens, and A. C. Albrecht, Chem. Phys. Lett. 178, 89 (1991).
  11. H. Kandori, H. Sasabe, and M. Mimuro, J. Am. Chem. Soc. 116, 2671 (1994).
    [CrossRef]

2003

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, Appl. Phys. B 76, 809 (2003).
[CrossRef]

2001

R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, Appl. Phys. Lett. 79, 566 (2001).
[CrossRef]

2000

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, Phys. Rev. B 62, 10083 (2000).
[CrossRef]

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, Rev. Sci. Instrum. 71, 3317 (2000).
[CrossRef]

1994

H. Kandori, H. Sasabe, and M. Mimuro, J. Am. Chem. Soc. 116, 2671 (1994).
[CrossRef]

1991

A. P. Shreve, J. K. Trautman, T. G. Owens, and A. C. Albrecht, Chem. Phys. Lett. 178, 89 (1991).

1988

J. Shah, IEEE J. Quantum Electron. QE-24, 276 (1988).
[CrossRef]

1979

R. N. Gyuzalian, S. B. Sogomonian, and Z. G. Horvath, Opt. Commun. 29, 239 (1979).
[CrossRef]

1977

R. J. Thrash, H. L. B. Fang, and G. E. Leroi, J. Chem. Phys. 67, 5930 (1977).

1975

H. Mahr and M. D. Hirsch, Opt. Commun. 13, 96 (1975).
[CrossRef]

1969

M. A. Duguay and J. W. Hansen, Opt. Commun. 1, 254 (1969).
[CrossRef]

Albrecht, A. C.

A. P. Shreve, J. K. Trautman, T. G. Owens, and A. C. Albrecht, Chem. Phys. Lett. 178, 89 (1991).

Duguay, M. A.

M. A. Duguay and J. W. Hansen, Opt. Commun. 1, 254 (1969).
[CrossRef]

Ernsting, N. P.

R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, Appl. Phys. Lett. 79, 566 (2001).
[CrossRef]

Fang, H. L. B.

R. J. Thrash, H. L. B. Fang, and G. E. Leroi, J. Chem. Phys. 67, 5930 (1977).

Fujiwara, S.

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, Rev. Sci. Instrum. 71, 3317 (2000).
[CrossRef]

Gilch, P.

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, Appl. Phys. B 76, 809 (2003).
[CrossRef]

Gyuzalian, R. N.

R. N. Gyuzalian, S. B. Sogomonian, and Z. G. Horvath, Opt. Commun. 29, 239 (1979).
[CrossRef]

Hansen, J. W.

M. A. Duguay and J. W. Hansen, Opt. Commun. 1, 254 (1969).
[CrossRef]

Hirsch, M. D.

H. Mahr and M. D. Hirsch, Opt. Commun. 13, 96 (1975).
[CrossRef]

Horvath, Z. G.

R. N. Gyuzalian, S. B. Sogomonian, and Z. G. Horvath, Opt. Commun. 29, 239 (1979).
[CrossRef]

Kandori, H.

H. Kandori, H. Sasabe, and M. Mimuro, J. Am. Chem. Soc. 116, 2671 (1994).
[CrossRef]

Kanematsu, Y.

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, Rev. Sci. Instrum. 71, 3317 (2000).
[CrossRef]

Kharlanov, V.

R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, Appl. Phys. Lett. 79, 566 (2001).
[CrossRef]

Kinoshita, S.

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, Rev. Sci. Instrum. 71, 3317 (2000).
[CrossRef]

Kovalenko, S. A.

R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, Appl. Phys. Lett. 79, 566 (2001).
[CrossRef]

Kurita, S.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, Phys. Rev. B 62, 10083 (2000).
[CrossRef]

Laimgruber, S.

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, Appl. Phys. B 76, 809 (2003).
[CrossRef]

Leroi, G. E.

R. J. Thrash, H. L. B. Fang, and G. E. Leroi, J. Chem. Phys. 67, 5930 (1977).

Mahr, H.

H. Mahr and M. D. Hirsch, Opt. Commun. 13, 96 (1975).
[CrossRef]

Mimuro, M.

H. Kandori, H. Sasabe, and M. Mimuro, J. Am. Chem. Soc. 116, 2671 (1994).
[CrossRef]

Nakajima, K.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, Phys. Rev. B 62, 10083 (2000).
[CrossRef]

Owens, T. G.

A. P. Shreve, J. K. Trautman, T. G. Owens, and A. C. Albrecht, Chem. Phys. Lett. 178, 89 (1991).

Ozawa, H.

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, Rev. Sci. Instrum. 71, 3317 (2000).
[CrossRef]

Saito, S.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, Phys. Rev. B 62, 10083 (2000).
[CrossRef]

Sasabe, H.

H. Kandori, H. Sasabe, and M. Mimuro, J. Am. Chem. Soc. 116, 2671 (1994).
[CrossRef]

Schanz, R.

R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, Appl. Phys. Lett. 79, 566 (2001).
[CrossRef]

Schmidt, B.

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, Appl. Phys. B 76, 809 (2003).
[CrossRef]

Shah, J.

J. Shah, IEEE J. Quantum Electron. QE-24, 276 (1988).
[CrossRef]

Shreve, A. P.

A. P. Shreve, J. K. Trautman, T. G. Owens, and A. C. Albrecht, Chem. Phys. Lett. 178, 89 (1991).

Sogomonian, S. B.

R. N. Gyuzalian, S. B. Sogomonian, and Z. G. Horvath, Opt. Commun. 29, 239 (1979).
[CrossRef]

Suemoto, T.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, Phys. Rev. B 62, 10083 (2000).
[CrossRef]

Sugimoto, N.

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, Rev. Sci. Instrum. 71, 3317 (2000).
[CrossRef]

Takeda, J.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, Phys. Rev. B 62, 10083 (2000).
[CrossRef]

Tanaka, I.

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, Rev. Sci. Instrum. 71, 3317 (2000).
[CrossRef]

Thrash, R. J.

R. J. Thrash, H. L. B. Fang, and G. E. Leroi, J. Chem. Phys. 67, 5930 (1977).

Tomimoto, S.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, Phys. Rev. B 62, 10083 (2000).
[CrossRef]

Trautman, J. K.

A. P. Shreve, J. K. Trautman, T. G. Owens, and A. C. Albrecht, Chem. Phys. Lett. 178, 89 (1991).

Zinth, W.

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, Appl. Phys. B 76, 809 (2003).
[CrossRef]

Appl. Phys. B

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, Appl. Phys. B 76, 809 (2003).
[CrossRef]

Appl. Phys. Lett.

R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, Appl. Phys. Lett. 79, 566 (2001).
[CrossRef]

Chem. Phys. Lett.

A. P. Shreve, J. K. Trautman, T. G. Owens, and A. C. Albrecht, Chem. Phys. Lett. 178, 89 (1991).

IEEE J. Quantum Electron.

J. Shah, IEEE J. Quantum Electron. QE-24, 276 (1988).
[CrossRef]

J. Am. Chem. Soc.

H. Kandori, H. Sasabe, and M. Mimuro, J. Am. Chem. Soc. 116, 2671 (1994).
[CrossRef]

J. Chem. Phys.

R. J. Thrash, H. L. B. Fang, and G. E. Leroi, J. Chem. Phys. 67, 5930 (1977).

Opt. Commun.

H. Mahr and M. D. Hirsch, Opt. Commun. 13, 96 (1975).
[CrossRef]

R. N. Gyuzalian, S. B. Sogomonian, and Z. G. Horvath, Opt. Commun. 29, 239 (1979).
[CrossRef]

M. A. Duguay and J. W. Hansen, Opt. Commun. 1, 254 (1969).
[CrossRef]

Phys. Rev. B

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, Phys. Rev. B 62, 10083 (2000).
[CrossRef]

Rev. Sci. Instrum.

S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, and S. Fujiwara, Rev. Sci. Instrum. 71, 3317 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic illustration of the collimated fluorescence and gate beams that cross with a finite angle for the time-to-space conversion. (b) Experimental apparatus for the time–wavelength two-dimensional femtosecond fluorescence imaging: S, sample; CL, cylindrical lens; BBO, β-barium borate; LBO, lithium triborate.

Fig. 2
Fig. 2

Time–wavelength two-dimensional femtosecond fluorescence image obtained from coumarin 152 in ethanol (1.25×10-2 M). (a) Fluorescence image on CCD, (b) spectral trace, (c) temporal trace.

Fig. 3
Fig. 3

(a) Temporal traces of the coumarin 152 fluorescence obtained by changing the fluorescence-gate timing with a 0.2-ps step. (b) Temporal traces after intensity correction.

Fig. 4
Fig. 4

Time–wavelength two-dimensional femtosecond fluorescence image obtained from β-carotene in decane (1.25×10-3 M) with the magic-angle polarization condition. (a) Fluorescence image on CCD, (b) spectral trace, (c) temporal trace, (d) intensity-corrected temporal trace plotted versus the calibrated time scale (red) and a fitted curve (dotted).

Metrics