Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Jet-type, water-cooled heat sink that yields 255-W continuous-wave laser output at 808 nm from a 1-cm laser diode bar

Not Accessible

Your library or personal account may give you access

Abstract

A newly designed jet-type, water-cooled heat sink (the funryu heat sink, meaning fountain flow in Japanese) yielded 255-W cw laser output at 808 nm from a 1-cm bar made from InGaAsP/InGaP quantum-well active layers with a 67% fill factor [70 quantum-well laser diode (LD) array along the 1-cm bar]. A funryu heat sink measuring 1.1 mm in thickness gave the LD 0.25 °C/W thermal resistance, one of the lowest values achieved with a 1-cm LD bar. Over a short period of operation, the device reached a maximum cw power of 255 W. To the best of our knowledge, this is the highest power ever achieved in 808-nm LD operation. In the future, the funryu heat sink may be capable of 80-W cw operation over an extended lifetime of several thousand hours.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Thermal hydraulic performance of a microchannel heat sink for cooling a high-power diode laser bar

Di-Hai Wu, Chung-En Zah, and Xingsheng Liu
Appl. Opt. 58(8) 1966-1977 (2019)

Intensification of heat transfer in high-power laser diode bars by means of a porous metal heat-sink

V.V. Apollonov, S.I. Derzhavin, V.V. Kuzminov, D.A. Mashkovskiy, V.N. Timoshkin, and V.A. Philonenko
Opt. Express 4(1) 27-32 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved