Abstract

We report observation of the interaction between two coherent dissipative spatial solitons in a periodically patterned semiconductor optical amplifier with power levels of tens of milliwatts. The interactions are nonlocal and phase dependent and exhibit surprising features, such as soliton birth. The experimental results are in good agreement with the numerical simulations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
    [CrossRef] [PubMed]
  2. E. A. Ultanir, D. Michaelis, F. Lederer, and G. I. Stegeman, Opt. Lett. 28, 251 (2003).
    [CrossRef] [PubMed]
  3. E. A. Ultanir, G. I. Stegeman, D. Michaelis, C. H. Lange, and G. I. Stegeman, Phys. Rev. Lett. 90, 253903 (2003).
    [CrossRef]
  4. N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, New York, 2002).
    [CrossRef]
  5. D. J. Bossert and D. Gallant, IEEE Photon. Technol. Lett.8, 322 (1996).
    [CrossRef]
  6. A. W. Snyder and D. J. Mitchell, Science 276, 1538 (1997).
    [CrossRef]
  7. C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91, 073901 (2003).
    [CrossRef]
  8. F. Lederer, ed., feature section on Optical Spatial Solitons, IEEE J. Quantum Electron. 39, 1–64 (2003).
    [CrossRef]
  9. M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, Opt. Lett. 27, 1460 (2002).
    [CrossRef]
  10. B. Luther-Davies and Y. Xiaoping, Opt. Lett. 17, 496 (1992).
    [CrossRef] [PubMed]
  11. T. T. Shi and S. Chi, Opt. Lett. 15, 1123 (1990).
    [CrossRef] [PubMed]

2003 (4)

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef]

F. Lederer, ed., feature section on Optical Spatial Solitons, IEEE J. Quantum Electron. 39, 1–64 (2003).
[CrossRef]

E. A. Ultanir, D. Michaelis, F. Lederer, and G. I. Stegeman, Opt. Lett. 28, 251 (2003).
[CrossRef] [PubMed]

E. A. Ultanir, G. I. Stegeman, D. Michaelis, C. H. Lange, and G. I. Stegeman, Phys. Rev. Lett. 90, 253903 (2003).
[CrossRef]

2002 (1)

1999 (1)

G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
[CrossRef] [PubMed]

1997 (1)

A. W. Snyder and D. J. Mitchell, Science 276, 1538 (1997).
[CrossRef]

1992 (1)

1990 (1)

Assanto, G.

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef]

M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, Opt. Lett. 27, 1460 (2002).
[CrossRef]

Bossert, D. J.

D. J. Bossert and D. Gallant, IEEE Photon. Technol. Lett.8, 322 (1996).
[CrossRef]

Brzdakiewicz, K. A.

Chi, S.

Conti, C.

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef]

Gallant, D.

D. J. Bossert and D. Gallant, IEEE Photon. Technol. Lett.8, 322 (1996).
[CrossRef]

Lange, C. H.

E. A. Ultanir, G. I. Stegeman, D. Michaelis, C. H. Lange, and G. I. Stegeman, Phys. Rev. Lett. 90, 253903 (2003).
[CrossRef]

Lederer, F.

Luther-Davies, B.

Michaelis, D.

E. A. Ultanir, G. I. Stegeman, D. Michaelis, C. H. Lange, and G. I. Stegeman, Phys. Rev. Lett. 90, 253903 (2003).
[CrossRef]

E. A. Ultanir, D. Michaelis, F. Lederer, and G. I. Stegeman, Opt. Lett. 28, 251 (2003).
[CrossRef] [PubMed]

Mitchell, D. J.

A. W. Snyder and D. J. Mitchell, Science 276, 1538 (1997).
[CrossRef]

Peccianti, M.

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef]

M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, Opt. Lett. 27, 1460 (2002).
[CrossRef]

Rosanov, N. N.

N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, New York, 2002).
[CrossRef]

Segev, M.

G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
[CrossRef] [PubMed]

Shi, T. T.

Snyder, A. W.

A. W. Snyder and D. J. Mitchell, Science 276, 1538 (1997).
[CrossRef]

Stegeman, G. I.

E. A. Ultanir, G. I. Stegeman, D. Michaelis, C. H. Lange, and G. I. Stegeman, Phys. Rev. Lett. 90, 253903 (2003).
[CrossRef]

E. A. Ultanir, G. I. Stegeman, D. Michaelis, C. H. Lange, and G. I. Stegeman, Phys. Rev. Lett. 90, 253903 (2003).
[CrossRef]

E. A. Ultanir, D. Michaelis, F. Lederer, and G. I. Stegeman, Opt. Lett. 28, 251 (2003).
[CrossRef] [PubMed]

G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
[CrossRef] [PubMed]

Ultanir, E. A.

E. A. Ultanir, D. Michaelis, F. Lederer, and G. I. Stegeman, Opt. Lett. 28, 251 (2003).
[CrossRef] [PubMed]

E. A. Ultanir, G. I. Stegeman, D. Michaelis, C. H. Lange, and G. I. Stegeman, Phys. Rev. Lett. 90, 253903 (2003).
[CrossRef]

Xiaoping, Y.

IEEE J. Quantum Electron. (1)

F. Lederer, ed., feature section on Optical Spatial Solitons, IEEE J. Quantum Electron. 39, 1–64 (2003).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (2)

E. A. Ultanir, G. I. Stegeman, D. Michaelis, C. H. Lange, and G. I. Stegeman, Phys. Rev. Lett. 90, 253903 (2003).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef]

Science (2)

G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
[CrossRef] [PubMed]

A. W. Snyder and D. J. Mitchell, Science 276, 1538 (1997).
[CrossRef]

Other (2)

N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, New York, 2002).
[CrossRef]

D. J. Bossert and D. Gallant, IEEE Photon. Technol. Lett.8, 322 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Calculated soliton intensity profile at 4-A electrical pumping and phase with the corresponding change (b) in the gain and refractive index in the waveguide. (The gain and refractive-index change were calculated with respect to the case in which there is no current in the device.) (Current I=πqdNtrAcontact/η, where Acontact=300 µm×1 cm×0.5.)

Fig. 2
Fig. 2

Output from the sample due to soliton interactions after 1-cm propagation; the separation between input beams is 15 µm at the input and 22 µm at the output. (a) Numerical simulations and (b) experimental results.

Fig. 3
Fig. 3

Numerical beam propagation over 3 cm of soliton interactions for (a) 0 and (b) π phase difference. The separation between input beams is 60.2 µm, and each has 38 mW of power. (c) Gain profile around the solitons for 0 phase difference at the input.

Fig. 4
Fig. 4

Output from the sample due to soliton interactions after 1-cm propagation; the separation between beams is 70 µm at the input and 66 µm at the output. (a) Numerical simulations and (b) experimental results.

Fig. 5
Fig. 5

Output from the sample due to soliton interactions after 1-cm propagation; the separation between input beams is 60.2 µm, and the angle between them is 0.5°. (a) Numerical simulations and (b) experimental results.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ψz=i2ψxx+ψfN1-ih-α,
DNxx+πz-BN2-CN3-fNψ2=0

Metrics