Abstract

We prepared AgxAs0.4Se0.6100-x chalcogenide glasses by a melt-quenching method and measured their linear and nonlinear optical properties to evaluate their potential applications to all-optical ultrafast switching devices. Their nonlinear refraction and absorption were measured by the Z-scan method at 1.05 µm. The addition of Ag to As2Se3 glass led to an increase in the nonlinear refractive index without introducing an increase in the nonlinear absorption coefficient. The glass with a Ag content of x=20 at.% revealed high nonlinearity ranging from 2000 to 27,000 times that of fused silica, depending on the incident optical intensity.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, J. Lightwave Technol. 6, 953 (1988).
    [CrossRef]
  2. M. Asobe, Opt. Fiber Technol. 3, 142 (1997).
    [CrossRef]
  3. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, Opt. Lett. 14, 1140 (1989).
    [CrossRef] [PubMed]
  4. Y. T. Hayden and J. S. Hayden, in The Properties of Optical Glass, H. Bach and N. Neuroth, eds. (Springer-Verlag, Berlin, 1998), Sec. 2.6.
  5. H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, J. Am. Ceram. Soc. 73, 1794 (1990).
    [CrossRef]
  6. F. Smektala, C. Quemard, L. Leneidre, J. Lucas, A. Barthélémy, and C. De Angelis, J. Non-Cryst. Solids 239, 139 (1998).
    [CrossRef]
  7. T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, J. Non-Cryst. Solids 256&257, 353 (1999).
    [CrossRef]
  8. F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, J. Non-Cryst. Solids 274, 232 (2000).
    [CrossRef]
  9. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, Opt. Lett. 25, 254 (2000).
    [CrossRef]
  10. C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, J. Phys. Chem. Solids 62, 1435 (2001).
  11. J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, Opt. Lett. 27, 119 (2002).
    [CrossRef]
  12. K. Ogusu, T. Kumagai, Y. Fujimori, and M. Kitao, J. Non-Cryst. Solids 324, 118 (2003).
    [CrossRef]
  13. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
    [CrossRef]
  14. J. M. Harbold, F. Ö. Ilday, F. W. Wise, and B. G. Aitken, IEEE Photon. Technol. Lett. 14, 822 (2002).
    [CrossRef]
  15. G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, Opt. Commun. 219, 427 (2003).
    [CrossRef]

Hayden, J. S.

Y. T. Hayden and J. S. Hayden, in The Properties of Optical Glass, H. Bach and N. Neuroth, eds. (Springer-Verlag, Berlin, 1998), Sec. 2.6.

Hayden, Y. T.

Y. T. Hayden and J. S. Hayden, in The Properties of Optical Glass, H. Bach and N. Neuroth, eds. (Springer-Verlag, Berlin, 1998), Sec. 2.6.

Other

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, J. Lightwave Technol. 6, 953 (1988).
[CrossRef]

M. Asobe, Opt. Fiber Technol. 3, 142 (1997).
[CrossRef]

V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, Opt. Lett. 14, 1140 (1989).
[CrossRef] [PubMed]

Y. T. Hayden and J. S. Hayden, in The Properties of Optical Glass, H. Bach and N. Neuroth, eds. (Springer-Verlag, Berlin, 1998), Sec. 2.6.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, J. Am. Ceram. Soc. 73, 1794 (1990).
[CrossRef]

F. Smektala, C. Quemard, L. Leneidre, J. Lucas, A. Barthélémy, and C. De Angelis, J. Non-Cryst. Solids 239, 139 (1998).
[CrossRef]

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, J. Non-Cryst. Solids 256&257, 353 (1999).
[CrossRef]

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, J. Non-Cryst. Solids 274, 232 (2000).
[CrossRef]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, Opt. Lett. 25, 254 (2000).
[CrossRef]

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, J. Phys. Chem. Solids 62, 1435 (2001).

J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, Opt. Lett. 27, 119 (2002).
[CrossRef]

K. Ogusu, T. Kumagai, Y. Fujimori, and M. Kitao, J. Non-Cryst. Solids 324, 118 (2003).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

J. M. Harbold, F. Ö. Ilday, F. W. Wise, and B. G. Aitken, IEEE Photon. Technol. Lett. 14, 822 (2002).
[CrossRef]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, Opt. Commun. 219, 427 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Dependence of linear refractive index n0 at 1.05 µm and bandgap wavelength λc on Ag content x.

Fig. 2
Fig. 2

(a) Dependence of nonlinear optical properties (n2 and β) on input intensity for Ag content x=0 and x=20 at.%. Experimental data from Ref. 8 are shown for comparison. (b) Calculated figure of merit F=2λβ/n2 as a function of the input intensity.

Metrics