Abstract

We study experimentally the Bloch-wave instabilities in optically induced photonic lattices. We reveal two different instability scenarios associated with either the transverse modulational instability of a single Bloch wave or the nonlinear interband coupling between different Bloch waves. We show that the transverse instability is greatly enhanced in the induced lattice in comparison with homogeneous media.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Yu. S. Kivshar and D. E. Pelinovsky, Phys. Rep. 331, 117 (2000).
    [CrossRef]
  2. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, San Diego, Calif., 2003).
  3. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
    [CrossRef]
  4. D. Neshev, E. A. Ostrovskaya, Yu. S. Kivshar, and W. Krolikowski, Opt. Lett. 28, 710 (2003).
    [CrossRef] [PubMed]
  5. D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
    [CrossRef] [PubMed]
  6. A. A. Sukhorukov, D. Neshev, Yu. S. Kivshar, and W. Krolikowski, arXiv.org e-Print archive, nlin.PS/0309075, September30, 2003, http://arxiv.org/abs/nlin.ps/0309075 .
  7. Z. G. Chen, J. Klinger, and D. N. Christodoulides, Phys. Rev. E 66, 066601 (2002).
    [CrossRef]
  8. Y. V. Kartashov, V. A. Aleshkevich, V. A. Vysloukh, A. A. Egorov, and A. S. Zelenina, J. Opt. Soc. Am. B 20, 1273 (2003).
    [CrossRef]
  9. Experimentally, the angle between the induced waveguides and the probe beam is measured in air by the degree of rotation of the beam splitter that combines the orthogonally polarized beams. The actual angle inside the crystal is n=2.3 times smaller.

2003 (4)

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef]

D. Neshev, E. A. Ostrovskaya, Yu. S. Kivshar, and W. Krolikowski, Opt. Lett. 28, 710 (2003).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
[CrossRef] [PubMed]

Y. V. Kartashov, V. A. Aleshkevich, V. A. Vysloukh, A. A. Egorov, and A. S. Zelenina, J. Opt. Soc. Am. B 20, 1273 (2003).
[CrossRef]

2002 (1)

Z. G. Chen, J. Klinger, and D. N. Christodoulides, Phys. Rev. E 66, 066601 (2002).
[CrossRef]

2000 (1)

Yu. S. Kivshar and D. E. Pelinovsky, Phys. Rep. 331, 117 (2000).
[CrossRef]

Agrawal, G. P.

Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, San Diego, Calif., 2003).

Aleshkevich, V. A.

Carmon, T.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef]

Chen, Z. G.

Z. G. Chen, J. Klinger, and D. N. Christodoulides, Phys. Rev. E 66, 066601 (2002).
[CrossRef]

Christodoulides, D. N.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
[CrossRef] [PubMed]

Z. G. Chen, J. Klinger, and D. N. Christodoulides, Phys. Rev. E 66, 066601 (2002).
[CrossRef]

Efremidis, N. K.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef]

Egorov, A. A.

Fleischer, J. W.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef]

Kartashov, Y. V.

Kivshar, Yu. S.

D. Neshev, E. A. Ostrovskaya, Yu. S. Kivshar, and W. Krolikowski, Opt. Lett. 28, 710 (2003).
[CrossRef] [PubMed]

Yu. S. Kivshar and D. E. Pelinovsky, Phys. Rep. 331, 117 (2000).
[CrossRef]

Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, San Diego, Calif., 2003).

Klinger, J.

Z. G. Chen, J. Klinger, and D. N. Christodoulides, Phys. Rev. E 66, 066601 (2002).
[CrossRef]

Krolikowski, W.

Lederer, F.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
[CrossRef] [PubMed]

Neshev, D.

Ostrovskaya, E. A.

Pelinovsky, D. E.

Yu. S. Kivshar and D. E. Pelinovsky, Phys. Rep. 331, 117 (2000).
[CrossRef]

Segev, M.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef]

Silberberg, Y.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
[CrossRef] [PubMed]

Vysloukh, V. A.

Zelenina, A. S.

J. Opt. Soc. Am. B (1)

Nature (1)

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rep. (1)

Yu. S. Kivshar and D. E. Pelinovsky, Phys. Rep. 331, 117 (2000).
[CrossRef]

Phys. Rev. E (1)

Z. G. Chen, J. Klinger, and D. N. Christodoulides, Phys. Rev. E 66, 066601 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef]

Other (3)

Experimentally, the angle between the induced waveguides and the probe beam is measured in air by the degree of rotation of the beam splitter that combines the orthogonally polarized beams. The actual angle inside the crystal is n=2.3 times smaller.

Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, San Diego, Calif., 2003).

A. A. Sukhorukov, D. Neshev, Yu. S. Kivshar, and W. Krolikowski, arXiv.org e-Print archive, nlin.PS/0309075, September30, 2003, http://arxiv.org/abs/nlin.ps/0309075 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Experimental images of the input profiles of the stripe (top) and lattice (bottom). (b) Excitation scheme: α is the inclination angle of the lattice with respect to the input beam.

Fig. 2
Fig. 2

Transverse beam instability under collinear excitation. (a) Uniform soliton stripe when the grating is off. (b), (c) Transverse destabilization of the stripe due to the presence of the lattice for two different positions of the input beam (beam power of 0.8 µW). (d) Transverse destabilization of the stripe without the lattice at a high beam power (95 µW). (e) Full breakup of the stripe corresponding to (d) in the presence of the lattice.

Fig. 3
Fig. 3

Transverse instability under noncollinear excitation. (a) Linear beam diffraction. Labels BA and BB indicate the sections of the beam with dominant contributions from the second and third bands. The shaded regions represent minima of the grating intensity. (b)–(e) Beam profiles at higher laser powers and the development of the transverse instability.

Metrics