Abstract

We present an algorithm to reconstruct chromosphere concentration images directly rather than following the traditional two-step process of reconstructing wavelength-dependent absorption coefficient images and then calculating chromosphere concentration images. This procedure imposes prior spectral information into the image reconstruction that results in a dramatic improvement in the image contrast-to-noise ratio of better than 100%. We demonstrate this improvement with simulations and a dynamic blood phantom experiment.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, Radiology 218, 261 (2001).
    [CrossRef] [PubMed]
  2. D. J. Hawrysz and E. M. Sevick-Muraca, Neoplasia 2, 388 (2000).
    [CrossRef]
  3. S. R. Arridge, Inverse Probl. 15, R41 (1999).
    [CrossRef]
  4. E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. dissertation (University College London, London, England, 2002).
  5. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
    [CrossRef] [PubMed]
  6. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, Opt. Lett. 28, 2339 (2003).
    [CrossRef] [PubMed]
  7. K. D. Paulsen and H. Jiang, Med. Phys. 22, 691 (1995).
    [CrossRef] [PubMed]
  8. M. S. Patterson, B. Chance, and B. C. Wilson, Appl. Opt. 28, 2331 (1989).
    [CrossRef] [PubMed]
  9. B. W. Pogue and M. S. Patterson, Phys. Med. Biol. 39, 1157 (1994).
    [CrossRef] [PubMed]
  10. G. Strangman, M. A. Franceschini, and D. A. Boas, Neuroimage 18, 865 (2003).
    [CrossRef] [PubMed]
  11. K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, J. Biomed. Opt. 7, 51 (2002).
    [CrossRef] [PubMed]

2003 (2)

2002 (2)

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, J. Biomed. Opt. 7, 51 (2002).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

2001 (1)

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, Radiology 218, 261 (2001).
[CrossRef] [PubMed]

2000 (1)

D. J. Hawrysz and E. M. Sevick-Muraca, Neoplasia 2, 388 (2000).
[CrossRef]

1999 (1)

S. R. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

1995 (1)

K. D. Paulsen and H. Jiang, Med. Phys. 22, 691 (1995).
[CrossRef] [PubMed]

1994 (1)

B. W. Pogue and M. S. Patterson, Phys. Med. Biol. 39, 1157 (1994).
[CrossRef] [PubMed]

1989 (1)

Arridge, S. R.

Boas, D. A.

G. Strangman, M. A. Franceschini, and D. A. Boas, Neuroimage 18, 865 (2003).
[CrossRef] [PubMed]

Chance, B.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, Appl. Opt. 28, 2331 (1989).
[CrossRef] [PubMed]

Choe, R.

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, Opt. Lett. 28, 2339 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

Corlu, A.

Culver, J. P.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

Durduran, T.

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, Opt. Lett. 28, 2339 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

Franceschini, M. A.

G. Strangman, M. A. Franceschini, and D. A. Boas, Neuroimage 18, 865 (2003).
[CrossRef] [PubMed]

Giammarco, J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

Hawrysz, D. J.

D. J. Hawrysz and E. M. Sevick-Muraca, Neoplasia 2, 388 (2000).
[CrossRef]

Hillman, E. M. C.

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, Opt. Lett. 28, 2339 (2003).
[CrossRef] [PubMed]

E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. dissertation (University College London, London, England, 2002).

Holboke, M. J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

Jiang, H.

K. D. Paulsen and H. Jiang, Med. Phys. 22, 691 (1995).
[CrossRef] [PubMed]

Kohl, M.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, J. Biomed. Opt. 7, 51 (2002).
[CrossRef] [PubMed]

McBride, T. O.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, Radiology 218, 261 (2001).
[CrossRef] [PubMed]

Obrig, H.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, J. Biomed. Opt. 7, 51 (2002).
[CrossRef] [PubMed]

Osterberg, U. L.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, Radiology 218, 261 (2001).
[CrossRef] [PubMed]

Osterman, K. S.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, Radiology 218, 261 (2001).
[CrossRef] [PubMed]

Patterson, M. S.

Paulsen, K. D.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, Radiology 218, 261 (2001).
[CrossRef] [PubMed]

K. D. Paulsen and H. Jiang, Med. Phys. 22, 691 (1995).
[CrossRef] [PubMed]

Pogue, B. W.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, Radiology 218, 261 (2001).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, Phys. Med. Biol. 39, 1157 (1994).
[CrossRef] [PubMed]

Poplack, S. P.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, Radiology 218, 261 (2001).
[CrossRef] [PubMed]

Schweiger, M.

Sevick-Muraca, E. M.

D. J. Hawrysz and E. M. Sevick-Muraca, Neoplasia 2, 388 (2000).
[CrossRef]

Steinbrink, J.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, J. Biomed. Opt. 7, 51 (2002).
[CrossRef] [PubMed]

Strangman, G.

G. Strangman, M. A. Franceschini, and D. A. Boas, Neuroimage 18, 865 (2003).
[CrossRef] [PubMed]

Uludag, K.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, J. Biomed. Opt. 7, 51 (2002).
[CrossRef] [PubMed]

Villringer, A.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, J. Biomed. Opt. 7, 51 (2002).
[CrossRef] [PubMed]

Wells, W. A.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, Radiology 218, 261 (2001).
[CrossRef] [PubMed]

Wilson, B. C.

Yodh, A. G.

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, Opt. Lett. 28, 2339 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

Zubkov, L.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

Appl. Opt. (1)

Inverse Probl. (1)

S. R. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

J. Biomed. Opt. (1)

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, J. Biomed. Opt. 7, 51 (2002).
[CrossRef] [PubMed]

Med. Phys. (1)

K. D. Paulsen and H. Jiang, Med. Phys. 22, 691 (1995).
[CrossRef] [PubMed]

Neoplasia (1)

D. J. Hawrysz and E. M. Sevick-Muraca, Neoplasia 2, 388 (2000).
[CrossRef]

Neuroimage (1)

G. Strangman, M. A. Franceschini, and D. A. Boas, Neuroimage 18, 865 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (2)

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Phys. Med. Biol. 47, 2847 (2002).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, Phys. Med. Biol. 39, 1157 (1994).
[CrossRef] [PubMed]

Radiology (1)

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, Radiology 218, 261 (2001).
[CrossRef] [PubMed]

Other (1)

E. M. C. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” Ph.D. dissertation (University College London, London, England, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Comparison of HbO2 and HbR concentration reconstructions of simulated data by use of the indirect and direct methods. The field of view is 5 cm×5 cm, and in-depth center image slices are shown. The sources are at z=0 and their xy positions are indicated by circles. The detectors are at z=6 cm and their positions are indicated by squares.

Fig. 2
Fig. 2

Plotted are objective measures of the reconstructed images of simulated data of different wavelength combinations by use of indirect and direct methods: (a) CNR versus FWHM and (b) cross talk versus FWHM.

Fig. 3
Fig. 3

Comparison of HbR concentration reconstructions of blood phantom experimental data by use of indirect and direct methods. The field of view is 10 cm×8 cm, and image slices are shown at each 1.5-cm interval. The sources are at z=0 and their xy positions are indicated by circles. The detectors are at z=5.5 cm and their positions are indicated by squares.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

μaλ=ϵHbO2λHbO2+ϵHbRλHbR,
Φ1λ1Φ1λ2=Wλ100Wλ2δμaλ1δμaλ2=ϵHbO2λ1Wλ1ϵHbR1λ1Wλ1ϵHbO2λ2Wλ2ϵHbRλ2Wλ2
×δHbO2δHbR.

Metrics