Abstract

The statistical properties of the intensity in close proximity to highly scattering, randomly inhomogeneous media are investigated. Whereas the intensity probability density function obeys the same law irrespective of the distance z from the interface, the second-order intensity correlation length changes for distances smaller than the wavelength. Contrary to predictions of the conventional coherence theory, the corresponding field correlation length can be smaller than the wavelength of light.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Dainty, ed., Laser Speckle and Related Phenomena (Springer-Verlag, New York, 1975).
    [CrossRef]
  2. K. Lieberman, N. Ben-Ami, and A. Lewis, Rev. Sci. Instrum. 67, 3567 (1996).
    [CrossRef]
  3. W. H. Carter and E. Wolf, J. Opt. Soc. Am. 65, 1067 (1975).
  4. E. Wolf and W. H. Carter, Opt. Commun. 50, 131 (1984).
    [CrossRef]
  5. H. Roychowdhury and E. Wolf, Opt. Lett. 28, 170 (2003).
    [CrossRef] [PubMed]
  6. A. Apostol and A. Dogariu, Phys. Rev. Lett. 91, 093901 (2003).
    [CrossRef]

2003 (2)

A. Apostol and A. Dogariu, Phys. Rev. Lett. 91, 093901 (2003).
[CrossRef]

H. Roychowdhury and E. Wolf, Opt. Lett. 28, 170 (2003).
[CrossRef] [PubMed]

1996 (1)

K. Lieberman, N. Ben-Ami, and A. Lewis, Rev. Sci. Instrum. 67, 3567 (1996).
[CrossRef]

1984 (1)

E. Wolf and W. H. Carter, Opt. Commun. 50, 131 (1984).
[CrossRef]

1975 (1)

Apostol, A.

A. Apostol and A. Dogariu, Phys. Rev. Lett. 91, 093901 (2003).
[CrossRef]

Ben-Ami, N.

K. Lieberman, N. Ben-Ami, and A. Lewis, Rev. Sci. Instrum. 67, 3567 (1996).
[CrossRef]

Carter, W. H.

E. Wolf and W. H. Carter, Opt. Commun. 50, 131 (1984).
[CrossRef]

W. H. Carter and E. Wolf, J. Opt. Soc. Am. 65, 1067 (1975).

Dogariu, A.

A. Apostol and A. Dogariu, Phys. Rev. Lett. 91, 093901 (2003).
[CrossRef]

Lewis, A.

K. Lieberman, N. Ben-Ami, and A. Lewis, Rev. Sci. Instrum. 67, 3567 (1996).
[CrossRef]

Lieberman, K.

K. Lieberman, N. Ben-Ami, and A. Lewis, Rev. Sci. Instrum. 67, 3567 (1996).
[CrossRef]

Roychowdhury, H.

Wolf, E.

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

E. Wolf and W. H. Carter, Opt. Commun. 50, 131 (1984).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. Apostol and A. Dogariu, Phys. Rev. Lett. 91, 093901 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

K. Lieberman, N. Ben-Ami, and A. Lewis, Rev. Sci. Instrum. 67, 3567 (1996).
[CrossRef]

Other (1)

J. C. Dainty, ed., Laser Speckle and Related Phenomena (Springer-Verlag, New York, 1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Topography of a Vycor glass sample with, a, rms roughness of 13.4 nm; b, far-field intensity distribution collected over the same area at z=5000 nm from the interface; and c, near-field intensity distribution collected over the same area at z=20 nm from the interface.

Fig. 2
Fig. 2

Normalized intensity probability density function measured in the near field (z=20 nm) and in the far field (z=5000 nm). Inset, typical example of average theoretical (continuous curve) and experimental (squares) near- and far-field intensity ratio INF/IFF plotted as a function of distance z.

Fig. 3
Fig. 3

Near-field speckle size as a function of distance z from the surface. Inset, corresponding near-field coherence length as a function of distance z from the interface.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Whomr,ω=πk2σ2S0ω01ρ exp-k2σ2ρ22×J0kρrdρ,
Wevr,z,ω=πk2σ2S0ω1ρ exp-k2σ2ρ22×J0kρrexp-2kzρ2-11/2dρ,

Metrics