Abstract

We demonstrate coherent anti-Stokes Raman scattering (CARS) heterodyne spectral interferometry for retrieval of the real and imaginary components of the third-order nonlinear susceptibility (χ3) of molecular vibrations. Extraction of the imaginary component of χ3 allows a straightforward reconstruction of the vibrationally resonant signal that is completely free of the electronic nonresonant background and resembles the spontaneous Raman spectrum. Heterodyne detection offers potential for signal amplification and enhanced sensitivity for CARS microscopy.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
  2. X. L. Nan, J.-X. Cheng, and X. S. Xie, J. Lipid. Res. 44, 2202 (2003).
    [CrossRef] [PubMed]
  3. J.-X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
    [CrossRef]
  4. A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
    [CrossRef]
  5. R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
    [CrossRef]
  6. Y. Yacoby and R. Fitzgibbon, J. Appl. Phys. 51, 3072 (1980).
    [CrossRef]
  7. C. Vinegoni, J. S. Bredfeldt, D. L. Marks, and S. A. Boppart, Opt. Express 12, 331 (2004), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  8. J. F. de Boer, B. Cense, H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, Opt. Lett. 28, 2067 (2003).
    [CrossRef] [PubMed]
  9. L. Lepetit, G. Cheriaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  10. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
  11. A. Volkmer, J.-X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
    [CrossRef]
  12. The subtle differences between the Raman and the Imχ3 spectra might be attributed to Raman depolarization effects.

2004 (2)

2003 (2)

2002 (2)

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

2001 (2)

J.-X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

1995 (1)

1980 (1)

Y. Yacoby and R. Fitzgibbon, J. Appl. Phys. 51, 3072 (1980).
[CrossRef]

1977 (1)

R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[CrossRef]

Book, L. D.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

J.-X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
[CrossRef]

Boppart, S. A.

Bouma, B. E.

Bredfeldt, J. S.

Cense, B.

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).

X. L. Nan, J.-X. Cheng, and X. S. Xie, J. Lipid. Res. 44, 2202 (2003).
[CrossRef] [PubMed]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).

A. Volkmer, J.-X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

J.-X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
[CrossRef]

Cheriaux, G.

de Boer, J. F.

Fitzgibbon, R.

Y. Yacoby and R. Fitzgibbon, J. Appl. Phys. 51, 3072 (1980).
[CrossRef]

Hellwarth, R. W.

R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[CrossRef]

Joffre, M.

Lepetit, L.

Marks, D. L.

Nan, X. L.

X. L. Nan, J.-X. Cheng, and X. S. Xie, J. Lipid. Res. 44, 2202 (2003).
[CrossRef] [PubMed]

Park, H.

Pierce, M. C.

Tearney, G. J.

Vinegoni, C.

Volkmer, A.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

Xie, X. S.

J.-X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).

X. L. Nan, J.-X. Cheng, and X. S. Xie, J. Lipid. Res. 44, 2202 (2003).
[CrossRef] [PubMed]

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).

A. Volkmer, J.-X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

J.-X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
[CrossRef]

Yacoby, Y.

Y. Yacoby and R. Fitzgibbon, J. Appl. Phys. 51, 3072 (1980).
[CrossRef]

Appl. Phys. Lett. (1)

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

J. Appl. Phys. (1)

Y. Yacoby and R. Fitzgibbon, J. Appl. Phys. 51, 3072 (1980).
[CrossRef]

J. Lipid. Res. (1)

X. L. Nan, J.-X. Cheng, and X. S. Xie, J. Lipid. Res. 44, 2202 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).

J.-X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

A. Volkmer, J.-X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

Prog. Quantum Electron. (1)

R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[CrossRef]

Other (1)

The subtle differences between the Raman and the Imχ3 spectra might be attributed to Raman depolarization effects.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the CARS spectral interferometer. The interferometer consists of a sample arm and a local oscillator (LO) arm. The length of the sample arm is adjustable for phase delay control. DM1, long-wave-pass dichroic mirror for combining pump and Stokes beams; DM2, DM3, shortwave-pass dichroic mirrors; SF, spectral filter (Schott RG695); CB, cubic 50% beam splitter; SM, stepper motor; PZT, piezoelectric transducer; QWP, quarter-wave plate; BPF, bandpass filter (600 nm, 40-nm bandwidth); PB, polarizing beam splitter; Spec, grating spectrometer; CCD, liquid-nitrogen-cooled charge-coupled device. Two identical oil immersion lenses are used (Nikon Plan Apo, 60×, N.A. of 1.4). Inset, CARS energy diagram for picosecond pump and femtosecond Stokes beams.

Fig. 2
Fig. 2

CARS spectral interferograms of two simultaneously collected orthogonal polarizations from a nonresonant sample (glass coverslip) with the arms offset by 1 ps (solid and dotted curves). The extracted Φrefω is indicated by the dashed curve.

Fig. 3
Fig. 3

CARS spectral amplitude and phase of the CH-stretching vibrational band of dodecane. (a) Extracted CARS amplitude (solid curve) and phase (dotted curve) from the spectral interferograms. The CARS spectrum was normalized by the nonresonant CARS spectrum of the local oscillator arm. (b) Reconstructed real {Esωcosϕsω-Enrω, dotted curve} and imaginary {Esωsinϕsω, solid curve} parts of the CARS spectrum. Inset, Raman spectrum of dodecane in the CH-stretch vibrational range. The spectrum was measured with a Raman microspectrometer with a 1-min integration time.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SCARSω=Elo2+Esω2+2EloEsωcos Φω,

Metrics