Abstract

Holographic gratings recorded in photochromic media often do not obtain the maximally achievable diffraction efficiency because of diminishing the fringe contrast caused, e.g., by a photochemically active readout beam or unequal intensities of object and reference waves. For nonreversible materials this problem causes a decrease in diffraction efficiency that is proportional to the signal-to-noise ratio (SNR). However, in nonlinear materials such as photochromic media, for which saturation effects need to be considered, an out-of-proportion decrease in the SNR results. It is shown that an overshooting peak during hologram growth, which then decays to a lower permanent level of diffraction, is an indicator for such a situation. Even a weak readout beam may cause such effects, which significantly affect the hologram kinetics. The observed overshooting diffraction efficiency may even be misinterpreted to be dependent on material properties. Experimental and theoretical proof that with low levels of auxiliary light this type of problem can be eliminated completely is presented. Throughout this research bacteriorhodopsin films were used, but the results are valid for photochromic media in general.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Hampp, Chem. Rev. 100, 1755 (2000).
    [CrossRef]
  2. N. Hampp, C. Bräuchle, and D. Oesterhelt, Biophys. J. 58, 83 (1990).
    [CrossRef] [PubMed]
  3. Y. O. Barmenkov, S. Y. Zaitsev, N. M. Kozhevnikov, and M. Y. Lipovskaya, Proc. SPIE 2968, 296 (1997).
    [CrossRef]
  4. S. Y. Zaitsev, N. M. Kozhevnikov, Y. O. Barmenkov, and M. Y. Lipovskaya, Photochem. Photobiol. 55, 851 (1992).
    [CrossRef]
  5. J. D. Downie and D. A. Timucin, Appl. Opt. 37, 2102 (1998).
    [CrossRef]
  6. J. D. Downie and D. T. Smithey, Appl. Opt. 35, 5780 (1996).
    [CrossRef] [PubMed]
  7. A. Seitz and N. Hampp, J. Phys. Chem. B 104, 7183 (2000).

2000 (2)

N. Hampp, Chem. Rev. 100, 1755 (2000).
[CrossRef]

A. Seitz and N. Hampp, J. Phys. Chem. B 104, 7183 (2000).

1998 (1)

1997 (1)

Y. O. Barmenkov, S. Y. Zaitsev, N. M. Kozhevnikov, and M. Y. Lipovskaya, Proc. SPIE 2968, 296 (1997).
[CrossRef]

1996 (1)

1992 (1)

S. Y. Zaitsev, N. M. Kozhevnikov, Y. O. Barmenkov, and M. Y. Lipovskaya, Photochem. Photobiol. 55, 851 (1992).
[CrossRef]

1990 (1)

N. Hampp, C. Bräuchle, and D. Oesterhelt, Biophys. J. 58, 83 (1990).
[CrossRef] [PubMed]

Barmenkov, Y. O.

Y. O. Barmenkov, S. Y. Zaitsev, N. M. Kozhevnikov, and M. Y. Lipovskaya, Proc. SPIE 2968, 296 (1997).
[CrossRef]

S. Y. Zaitsev, N. M. Kozhevnikov, Y. O. Barmenkov, and M. Y. Lipovskaya, Photochem. Photobiol. 55, 851 (1992).
[CrossRef]

Bräuchle, C.

N. Hampp, C. Bräuchle, and D. Oesterhelt, Biophys. J. 58, 83 (1990).
[CrossRef] [PubMed]

Downie, J. D.

Hampp, N.

N. Hampp, Chem. Rev. 100, 1755 (2000).
[CrossRef]

A. Seitz and N. Hampp, J. Phys. Chem. B 104, 7183 (2000).

N. Hampp, C. Bräuchle, and D. Oesterhelt, Biophys. J. 58, 83 (1990).
[CrossRef] [PubMed]

Kozhevnikov, N. M.

Y. O. Barmenkov, S. Y. Zaitsev, N. M. Kozhevnikov, and M. Y. Lipovskaya, Proc. SPIE 2968, 296 (1997).
[CrossRef]

S. Y. Zaitsev, N. M. Kozhevnikov, Y. O. Barmenkov, and M. Y. Lipovskaya, Photochem. Photobiol. 55, 851 (1992).
[CrossRef]

Lipovskaya, M. Y.

Y. O. Barmenkov, S. Y. Zaitsev, N. M. Kozhevnikov, and M. Y. Lipovskaya, Proc. SPIE 2968, 296 (1997).
[CrossRef]

S. Y. Zaitsev, N. M. Kozhevnikov, Y. O. Barmenkov, and M. Y. Lipovskaya, Photochem. Photobiol. 55, 851 (1992).
[CrossRef]

Oesterhelt, D.

N. Hampp, C. Bräuchle, and D. Oesterhelt, Biophys. J. 58, 83 (1990).
[CrossRef] [PubMed]

Seitz, A.

A. Seitz and N. Hampp, J. Phys. Chem. B 104, 7183 (2000).

Smithey, D. T.

Timucin, D. A.

Zaitsev, S. Y.

Y. O. Barmenkov, S. Y. Zaitsev, N. M. Kozhevnikov, and M. Y. Lipovskaya, Proc. SPIE 2968, 296 (1997).
[CrossRef]

S. Y. Zaitsev, N. M. Kozhevnikov, Y. O. Barmenkov, and M. Y. Lipovskaya, Photochem. Photobiol. 55, 851 (1992).
[CrossRef]

Appl. Opt. (2)

Biophys. J. (1)

N. Hampp, C. Bräuchle, and D. Oesterhelt, Biophys. J. 58, 83 (1990).
[CrossRef] [PubMed]

Chem. Rev. (1)

N. Hampp, Chem. Rev. 100, 1755 (2000).
[CrossRef]

J. Phys. Chem. B (1)

A. Seitz and N. Hampp, J. Phys. Chem. B 104, 7183 (2000).

Photochem. Photobiol. (1)

S. Y. Zaitsev, N. M. Kozhevnikov, Y. O. Barmenkov, and M. Y. Lipovskaya, Photochem. Photobiol. 55, 851 (1992).
[CrossRef]

Proc. SPIE (1)

Y. O. Barmenkov, S. Y. Zaitsev, N. M. Kozhevnikov, and M. Y. Lipovskaya, Proc. SPIE 2968, 296 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Improvement of the steady-state diffraction efficiency of holograms in a BR film exposed to readout light by blue auxiliary light (write, 532 nm, 5 mW/cm2; readout, 647 nm, 1 mW/cm2; auxiliary, 413 nm). A, Dependence of steady-state diffraction efficiencies in a BR film on the auxiliary light’s intensity. B, Numerical simulation (ΔM+2η) of the experimental data from A. Symbols represent experimental or related numerical results. The curves are a guide to the eye.

Fig. 2
Fig. 2

Hologram rise kinetics: A, Transition in the kinetics of the hologram growth from AOS (Δt647=0) to WSO (Δt647>50 s). B, Dependence of hologram growth curves in the AOS mode on intensity I413 of the blue auxiliary light.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

B568 k1,k2k3,k4 M412.
MRx,t=k12k1234B01-exp-k1234t.
ΔMRtB0=k1B-k1Dk34k1B234k1D234-k1B2k1B234 exp-k1B234t-k1D2k1D234 exp-k1D234t,  k1=k1B,  k1D=0,  ΔMRtB0=k1k34k1234k234-k12k1234 exp-k1234t-k2k234 exp-k234t.
ΔM-ΔMk20,k3=0=k1k4k124k24,  ΔM+ΔMk20,k30=k1k34k1234k234.
ΔM+ΔM-=k124k34k24k1234k234k4>1k2k12k4k34>1.
k3opt=k2k12-k4k2k12.
tmax=1k1 ln k12k2.

Metrics