Abstract

By recording low-pressure absorption lines of N2O around 3.9 µm, we fully qualify a pulsed entangled-cavity doubly resonant optical parametric oscillator as a power tool for high-resolution spectroscopy. This compact source runs at a high repetition rate >10 kHz with a low threshold of oscillation <8 µJ, is mode-hop-free tunable over 5 cm-1, and displays single-frequency Fourier-transformed-limited operation (linewidth <0.005 cm-1). A high potential for nonlinear spectroscopy is also expected given the high peak power (70 W) and the good quality M2<2 of the output beam.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See the special issue “Environmental trace gas detection using laser spectroscopy,” F. K. Tittel, ed., Appl. Phys. B 67, 273–397 (1998).
    [CrossRef]
  2. See the feature issue “Laser applications to chemical and environmental analysis,” A. C. Stanton and M. Sauer, eds., Appl. Opt. 40, 729–865 (2001).
    [CrossRef]
  3. J. J. Zayhowski, Opt. Lett. 22, 169 (1997).
    [CrossRef] [PubMed]
  4. C. Drag, A. Desormeaux, M. Lefebvre, and E. Rosencher, Opt. Lett. 27, 1238 (2002).
    [CrossRef]
  5. J. Falk, IEEE J. Quantum Electron. 7, 230 (1971).
    [CrossRef]
  6. C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, Appl. Opt. B 73, 195 (2001).
  7. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 21, 591 (1996).
    [CrossRef] [PubMed]
  8. L. E. Myers and W. R. Bosenberg, IEEE J. Quantum Electron. 33, 1663 (1997).
    [CrossRef]
  9. I. Ribet, C. Drag, M. Lefebvre, and E. Rosencher, Opt. Lett. 27, 255 (2002).
    [CrossRef]
  10. HITRAN 2000 spectral database, http://www.hitran.com .

2002 (2)

2001 (2)

1998 (1)

See the special issue “Environmental trace gas detection using laser spectroscopy,” F. K. Tittel, ed., Appl. Phys. B 67, 273–397 (1998).
[CrossRef]

1997 (2)

L. E. Myers and W. R. Bosenberg, IEEE J. Quantum Electron. 33, 1663 (1997).
[CrossRef]

J. J. Zayhowski, Opt. Lett. 22, 169 (1997).
[CrossRef] [PubMed]

1996 (1)

1971 (1)

J. Falk, IEEE J. Quantum Electron. 7, 230 (1971).
[CrossRef]

Bosenberg, W. R.

Byer, R. L.

Desormeaux, A.

Drag, C.

Eckardt, R. C.

Falk, J.

J. Falk, IEEE J. Quantum Electron. 7, 230 (1971).
[CrossRef]

Fejer, M. M.

Jeandron, M.

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, Appl. Opt. B 73, 195 (2001).

Lefebvre, M.

Myers, L. E.

Ribet, I.

I. Ribet, C. Drag, M. Lefebvre, and E. Rosencher, Opt. Lett. 27, 255 (2002).
[CrossRef]

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, Appl. Opt. B 73, 195 (2001).

Rosencher, E.

Zayhowski, J. J.

Appl. Opt. (1)

Appl. Opt. B (1)

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, Appl. Opt. B 73, 195 (2001).

Appl. Phys. B (1)

See the special issue “Environmental trace gas detection using laser spectroscopy,” F. K. Tittel, ed., Appl. Phys. B 67, 273–397 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Falk, IEEE J. Quantum Electron. 7, 230 (1971).
[CrossRef]

L. E. Myers and W. R. Bosenberg, IEEE J. Quantum Electron. 33, 1663 (1997).
[CrossRef]

Opt. Lett. (4)

Other (1)

HITRAN 2000 spectral database, http://www.hitran.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Principle of mode selection: ωi and ωs are the idler and signal frequencies, respectively. (b) Experimental setup: The entangled cavities are M1–M3 for the signal and M2–M4 for the idler radiation; ωp is the pump frequency.

Fig. 2
Fig. 2

Input–output energy dependence at the idler wavelength: experimental values (filled squares), calculation with deff=14 pm/V (solid curve), and deff=12 pm/V (dotted curve).

Fig. 3
Fig. 3

Spatial evolution of the radius of the idler beam (measured at 1/e2 of the maximum intensity): experimental values (filled squares), calculated Gaussian beam propagation (solid curve). Inset, idler beam at the entrance of the focal lens.

Fig. 4
Fig. 4

Absorption spectra of pure N2O at 10 hPa: (a) experiment, (b) HITRAN simulation. The acquisition time is 1 h.

Fig. 5
Fig. 5

Comparison of absorption spectra at 100 hPa (dotted curve) and 10 hPa (solid curve). (a) HITRAN simulation, (b) experiment. The acquisition time is 10 min.

Metrics