Abstract

A simple subwavelength focusing system formed by a straight or bent multimode waveguide is investigated numerically. The simulation results indicate that an appropriately designed multimode waveguide can focus the outgoing waves of a point source and form an image with a full width at half-maximum of less than half a wavelength in the near-field area at the other side of the waveguide. The physical mechanism of the subwavelength focusing for this imaging system is explained.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Lee, H. Y. Chiang, and H. Y. Mong, Opt. Lett. 28, 1772 (2003).
    [CrossRef] [PubMed]
  2. Y. Inouye and S. Kawata, Opt. Lett. 19, 159 (1994).
    [CrossRef]
  3. V. G. Veselago, Usp. Fiz. Nauk 92, 517 (1964) [Sov. Phys. Usp. 10, 509 (1968)].
    [CrossRef]
  4. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  5. M. Notomi, Phys. Rev. B 62, 10696 (2000).
    [CrossRef]
  6. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B 68, 045115 (2003).
    [CrossRef]
  7. L. Chen, S. L. He, and L. F. Shen, Phys. Rev. Lett. 92, 107404 (2004).
    [CrossRef]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
    [CrossRef] [PubMed]
  9. E. Cubukcu, K. Aydin, and E. Ozbay, Phys. Rev. Lett. 91, 207401 (2003).
    [CrossRef]
  10. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
    [CrossRef]
  11. H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, Appl. Phys. Lett. 83, 4486 (2003).
    [CrossRef]
  12. M. Muller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 1499 (2000).
    [CrossRef]
  13. M. Deopura, C. K. Ullal, B. Temelkuran, and Y. Fink, Opt. Lett. 26, 1197 (2001).
    [CrossRef]
  14. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  15. J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
    [CrossRef]
  16. M. Bachmann, P. A. Besse, and H. Melchior, Appl. Opt. 33, 3905 (1994).
    [CrossRef] [PubMed]
  17. S. L. He, X. Y. Ao, and V. Romanov, Appl. Opt. 42, 4855 (2003).
    [CrossRef] [PubMed]

2004 (1)

L. Chen, S. L. He, and L. F. Shen, Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

2003 (5)

E. Cubukcu, K. Aydin, and E. Ozbay, Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B 68, 045115 (2003).
[CrossRef]

H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, Appl. Phys. Lett. 83, 4486 (2003).
[CrossRef]

S. L. He, X. Y. Ao, and V. Romanov, Appl. Opt. 42, 4855 (2003).
[CrossRef] [PubMed]

C. H. Lee, H. Y. Chiang, and H. Y. Mong, Opt. Lett. 28, 1772 (2003).
[CrossRef] [PubMed]

2001 (2)

2000 (3)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

M. Notomi, Phys. Rev. B 62, 10696 (2000).
[CrossRef]

M. Muller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 1499 (2000).
[CrossRef]

1995 (1)

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

1994 (3)

1964 (1)

V. G. Veselago, Usp. Fiz. Nauk 92, 517 (1964) [Sov. Phys. Usp. 10, 509 (1968)].
[CrossRef]

Ao, X. Y.

Aydin, K.

E. Cubukcu, K. Aydin, and E. Ozbay, Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

Bachmann, M.

Berenger, J. P.

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Besse, P. A.

Braat, J. J. M.

H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, Appl. Phys. Lett. 83, 4486 (2003).
[CrossRef]

Chen, L.

L. Chen, S. L. He, and L. F. Shen, Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

Chiang, H. Y.

Cubukcu, E.

E. Cubukcu, K. Aydin, and E. Ozbay, Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

Deopura, M.

Fink, Y.

Groen, F. H.

H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, Appl. Phys. Lett. 83, 4486 (2003).
[CrossRef]

He, S. L.

L. Chen, S. L. He, and L. F. Shen, Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

S. L. He, X. Y. Ao, and V. Romanov, Appl. Opt. 42, 4855 (2003).
[CrossRef] [PubMed]

Inouye, Y.

Joannopoulos, J. D.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B 68, 045115 (2003).
[CrossRef]

Johnson, S. G.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B 68, 045115 (2003).
[CrossRef]

Kawata, S.

Lee, C. H.

Luo, C.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B 68, 045115 (2003).
[CrossRef]

Maka, T.

M. Muller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 1499 (2000).
[CrossRef]

Melchior, H.

Mong, H. Y.

Muller, M.

M. Muller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 1499 (2000).
[CrossRef]

Notomi, M.

M. Notomi, Phys. Rev. B 62, 10696 (2000).
[CrossRef]

Ozbay, E.

E. Cubukcu, K. Aydin, and E. Ozbay, Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

Pendry, J. B.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B 68, 045115 (2003).
[CrossRef]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Pereira, S. F.

H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, Appl. Phys. Lett. 83, 4486 (2003).
[CrossRef]

Romanov, S. G.

M. Muller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 1499 (2000).
[CrossRef]

Romanov, V.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Shen, L. F.

L. Chen, S. L. He, and L. F. Shen, Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Sotomayor Torres, C. M.

M. Muller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 1499 (2000).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

Temelkuran, B.

Ullal, C. K.

Veselago, V. G.

V. G. Veselago, Usp. Fiz. Nauk 92, 517 (1964) [Sov. Phys. Usp. 10, 509 (1968)].
[CrossRef]

Wang, H. F.

H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, Appl. Phys. Lett. 83, 4486 (2003).
[CrossRef]

Zentel, R.

M. Muller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 1499 (2000).
[CrossRef]

Adv. Mater. (1)

M. Muller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 1499 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, Appl. Phys. Lett. 83, 4486 (2003).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

J. Lightwave Technol. (1)

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. B (2)

M. Notomi, Phys. Rev. B 62, 10696 (2000).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B 68, 045115 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

L. Chen, S. L. He, and L. F. Shen, Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

E. Cubukcu, K. Aydin, and E. Ozbay, Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Usp. Fiz. Nauk (1)

V. G. Veselago, Usp. Fiz. Nauk 92, 517 (1964) [Sov. Phys. Usp. 10, 509 (1968)].
[CrossRef]

Other (1)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Focusing process (the FDTD simulation) of a dipole source in front of a multimode waveguide. The solid lines indicate the boundary of the multimode waveguide, and the dashed lines indicate the focal plane. (a) Snapshot of the electric field distribution. (b) Corresponding distribution of the light intensity. (c) Distribution of the light intensity when the evanescent components of the source field are filtered out. (d) Distribution of the Poynting vectors [corresponding to (b)] around the exit of the multimode waveguide. (e) Distribution of the Poynting vectors when the propagating components of the source field are filtered out.

Fig. 2
Fig. 2

Intensity distribution of the imaging result for two incoherent dipole sources that are separated from each other by a distance of 0.37λ (i.e., 0.24 µm). The two imaging peaks are clearly resolved (with a distance of approximately 0.3 µm).

Fig. 3
Fig. 3

(a) Intensity distribution for a dipole source in front of a multimode waveguide of semi-infinite length. (b) Subwavelength focusing (intensity distribution) by a multimode waveguide of much longer length (compared with the one in Fig. 1). (c) Relative intensity distributions at the internal focal planes in Fig. 3(a). (d) Relative intensity distributions at the focal planes (in air) in Figs. 3(b), 1(b), and 1(c). The FWHM values of the beams at focal planes AA, BB, CC, DD, and EE are 0.37λ, 0.52λ,0.25λ,0.23λ, and 0.37λ, respectively.

Fig. 4
Fig. 4

Snapshot of the field distribution in a subwavelength focusing system of a 30° bent multimode waveguide connected with straight waveguides at the two ends. The lengths of the input and output straight waveguides are 3.50 and 3.05 µm, respectively. An additional antireflective thin film [with a thickness of 0.05 µm and a refractive index of nrnc1/2] is coated at the end of the output straight waveguide to enhance the transmission in this example. Inset, intensity distribution at the focal plane.

Metrics