Abstract

An integrated fluidic adaptive zoom lens is demonstrated for what is believed to be the first time. A zoom lens was fabricated using an UV lithographic-galvanic-like process involving soft lithography and wafer bonding. The zooming capability of such a lens was achieved by varying the focal length instead of the distance between the lenses. A zoom ratio of greater than 2 was obtained for devices that are 8 mm thick and have a 20-mm lens diameter. Including the 30-mm image distance, the total physical length of the fluidic zoom lens was less than 43 mm. More-compact systems with a higher zoom ratio can be obtained by reduction of the aperture size.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Laikin, ed., Lens Design (Marcel Dekker, New York, 2001).
  2. M. F. Land and D. E. Nilsson, eds., Animal Eyes (Oxford U. Press, Oxford, England, 2002).
  3. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, Appl. Phys. Lett. 82, 3171 (2003).
    [CrossRef]
  4. D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, Appl. Opt. 43, 783 (2004).
    [CrossRef] [PubMed]
  5. D. Y. Zhang, N. Justis, and Y. H. Lo, in 2003 IEEE LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 523–524.
    [CrossRef]
  6. Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed. Engl. 37, 550 (1998).
    [CrossRef]
  7. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, J. Microelectromech. Syst. 9, 76 (2000).
    [CrossRef]

2004

2003

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, Appl. Phys. Lett. 82, 3171 (2003).
[CrossRef]

2000

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, J. Microelectromech. Syst. 9, 76 (2000).
[CrossRef]

1998

Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed. Engl. 37, 550 (1998).
[CrossRef]

Beebe, D. J.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, J. Microelectromech. Syst. 9, 76 (2000).
[CrossRef]

Berdichevsky, Y.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, Appl. Opt. 43, 783 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, Appl. Phys. Lett. 82, 3171 (2003).
[CrossRef]

Choi, J.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, Appl. Phys. Lett. 82, 3171 (2003).
[CrossRef]

Jo, B. H.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, J. Microelectromech. Syst. 9, 76 (2000).
[CrossRef]

Justis, N.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, Appl. Opt. 43, 783 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, N. Justis, and Y. H. Lo, in 2003 IEEE LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 523–524.
[CrossRef]

Lien, V.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, Appl. Opt. 43, 783 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, Appl. Phys. Lett. 82, 3171 (2003).
[CrossRef]

Lo, Y. H.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, Appl. Opt. 43, 783 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, Appl. Phys. Lett. 82, 3171 (2003).
[CrossRef]

D. Y. Zhang, N. Justis, and Y. H. Lo, in 2003 IEEE LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 523–524.
[CrossRef]

Motsegood, K. M.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, J. Microelectromech. Syst. 9, 76 (2000).
[CrossRef]

Van Lerberghe, L. M.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, J. Microelectromech. Syst. 9, 76 (2000).
[CrossRef]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed. Engl. 37, 550 (1998).
[CrossRef]

Xia, Y.

Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed. Engl. 37, 550 (1998).
[CrossRef]

Zhang, D. Y.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, Appl. Opt. 43, 783 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, Appl. Phys. Lett. 82, 3171 (2003).
[CrossRef]

D. Y. Zhang, N. Justis, and Y. H. Lo, in 2003 IEEE LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 523–524.
[CrossRef]

Angew. Chem. Int. Ed. Engl.

Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed. Engl. 37, 550 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, Appl. Phys. Lett. 82, 3171 (2003).
[CrossRef]

J. Microelectromech. Syst.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, J. Microelectromech. Syst. 9, 76 (2000).
[CrossRef]

Other

D. Y. Zhang, N. Justis, and Y. H. Lo, in 2003 IEEE LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 523–524.
[CrossRef]

M. Laikin, ed., Lens Design (Marcel Dekker, New York, 2001).

M. F. Land and D. E. Nilsson, eds., Animal Eyes (Oxford U. Press, Oxford, England, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Process flow for an integrated fluidic zoom lens: (a) Photolithographically define the positions of the lens chambers and the fluidic inlets and outlets on SU-8 100 photoresist. (b) Transfer the patterns of the lens chambers and fluidic connections to PDMS. (c) Punch through holes in PDMS and bond the PDMS to a silicon wafer. (d) Transfer patterns to another piece of PDMS. (e) Form a mold master by bonding the PDMS to another silicon wafer. (f) Produce the lens chamber, lens membrane, and fluidic connection by PDMS mold casting. (g) After demolding PDMS from the mold master, sandwich a glass substrate with two patterned PDMS wafers. (h) Dice the bonded wafer into separate lenses.

Fig. 2
Fig. 2

Relation of chamber pressures and pressure dependence of magnification factor for an integrated fluidic zoom lens. Measurements were made for objects that were 250 and 1000 mm away, at 30-mm image distance.

Fig. 3
Fig. 3

Dependence of magnification factor on the fluidic pressure of the front chamber in an integrated zoom lens. Measurements were made for objects 250 and 1000 mm away, at 50-mm image distance.

Fig. 4
Fig. 4

Zoom-out and zoom-in images formed by an integrated fluidic zoom lens (image distance 50 mm, object distance 250 mm). The length of each bar is 10 mm.

Fig. 5
Fig. 5

Relation between effective focal length and magnification factor for an integrated fluidic zoom lens with 30- and 50-mm image distances, obtained from a Code-V ray-tracing simulation.

Tables (1)

Tables Icon

Table 1 Summary of Zoom Ratio Results for Integrated Fluidic Zoom Lenses

Metrics