Abstract

A novel two-mode fiber-optic interferometer employing a liquid-crystal-clad fiber as a modal filter is proposed. The liquid-crystal-clad fiber can guide one of the second-order modes, TE01, and leak out the other TM01 and HE21 modes. Thus two spatial modes, fundamental mode HE11 and second-order mode TE01 serve as the two arms of the interferometer to detect an external perturbation. The experimental results obtained when this interferometer was used to sense temperatures ranging from 20 to 100 °C are demonstrated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Hocker, Appl. Opt. 18, 1445 (1979).
    [CrossRef] [PubMed]
  2. P. A. Leilabady and M. Corke, Opt. Lett. 12, 772 (1987).
    [CrossRef] [PubMed]
  3. M. R. Layton and J. A. Bucaro, Appl. Opt. 18, 666 (1979).
    [CrossRef] [PubMed]
  4. A. Sharma and R. Posey, Opt. Lett. 20, 2345 (1995).
    [CrossRef]
  5. B. Y. Kim, J. N. Blake, S. Y. Huang, and H. J. Shaw, Opt. Lett. 12, 729 (1987).
    [CrossRef] [PubMed]
  6. J. N. Blake, S. Y. Huang, B. Y. Kim, and H. J. Shaw, Opt. Lett. 12, 732 (1987).
    [CrossRef] [PubMed]
  7. K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R. O. Claus, J. Lightwave Technol. 8, 1688 (1990).
    [CrossRef]
  8. B. K. Kim, S. H. Yun, I. K. Hwang, and B. Y. Kim, Opt. Lett. 21, 934 (1996).
    [CrossRef] [PubMed]
  9. J. Canning and A. L. G. Carter, Opt. Lett. 22, 561 (1997).
    [CrossRef] [PubMed]
  10. S.-H. Chen and T.-J. Chen, Appl. Lett. 64, 1893 (1994).
    [CrossRef]

1997 (1)

1996 (1)

1995 (1)

1994 (1)

S.-H. Chen and T.-J. Chen, Appl. Lett. 64, 1893 (1994).
[CrossRef]

1990 (1)

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R. O. Claus, J. Lightwave Technol. 8, 1688 (1990).
[CrossRef]

1987 (3)

1979 (2)

Blake, J. N.

Bucaro, J. A.

Canning, J.

Carter, A. L. G.

Chen, S.-H.

S.-H. Chen and T.-J. Chen, Appl. Lett. 64, 1893 (1994).
[CrossRef]

Chen, T.-J.

S.-H. Chen and T.-J. Chen, Appl. Lett. 64, 1893 (1994).
[CrossRef]

Claus, R. O.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R. O. Claus, J. Lightwave Technol. 8, 1688 (1990).
[CrossRef]

Corke, M.

Hocker, G. B.

Huang, S. Y.

Hwang, I. K.

Kim, B. K.

Kim, B. Y.

Layton, M. R.

Leilabady, P. A.

Miller, M. S.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R. O. Claus, J. Lightwave Technol. 8, 1688 (1990).
[CrossRef]

Murphy, K. A.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R. O. Claus, J. Lightwave Technol. 8, 1688 (1990).
[CrossRef]

Posey, R.

Sharma, A.

Shaw, H. J.

Vengsarkar, A. M.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, and R. O. Claus, J. Lightwave Technol. 8, 1688 (1990).
[CrossRef]

Yun, S. H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometric structure of a liquid-crystal-clad fiber: (a) side view showing the fiber with the cladding removed, enclosed by a liquid crystal; (b) cross-sectional view showing a doubly clad fiber structure with a radially oriented LC outer cladding.

Fig. 2
Fig. 2

Experimental setup of a two-mode fiber-optic interferometer to detect the temperature effect on its output pattern.

Fig. 3
Fig. 3

Schematic of the electric field vectors of the HE11 and TE01 modes before and after they pass through the analyzer.

Fig. 4
Fig. 4

Observed output pattern of the interferometer from superposition of the HE11 and TE01 modes with different phase retardation induced by temperature changes.

Fig. 5
Fig. 5

Measurement of the contrast ratio of the interferometer output intensity versus temperature, with variation ranging from 20 to 100 °C.

Metrics