Abstract

A simple and practical microwave frequency-shifting technique based on a general temporal self-imaging (GTSI) effect in optical fiber is proposed, formulated, and experimentally demonstrated. The proposed technique can be applied to an arbitrary periodic microwave signal (e.g., a microwave tone) and provides unparalleled design flexibility to increase the frequency of the input microwave signal up to the desired value (limited only by the photodetector’s bandwidth). For instance, we demonstrate frequency upshifting of microwave tones from 10 to 50 GHz and from 40 to 354 GHz. These results also represent what is to the authors’ knowledge the first experimental observation of GTSI phenomena.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. McKinney, D. Seo, D. E. Leaird, and A. M. Weiner, J. Lightwave Technol. 21, 3020 (2003).
    [CrossRef]
  2. J. U. Kang, M. Y. Frankel, and R. D. Esman, Opt. Lett. 23, 1188 (1998).
    [CrossRef]
  3. F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
    [CrossRef]
  4. W. J. Caputi, IEEE Trans. Aerosp. Electron. Syst. 7, 269 (1971).
    [CrossRef]
  5. J. Azaña and L. R. Chen, J. Opt. Soc. Am. B 20, 1447 (2003).
    [CrossRef]
  6. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, Opt. Lett. 18, 220 (1993).
    [CrossRef]

2003 (2)

1999 (1)

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

1998 (1)

1993 (1)

1971 (1)

W. J. Caputi, IEEE Trans. Aerosp. Electron. Syst. 7, 269 (1971).
[CrossRef]

Azaña, J.

Bhushan, A. S.

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

Caputi, W. J.

W. J. Caputi, IEEE Trans. Aerosp. Electron. Syst. 7, 269 (1971).
[CrossRef]

Chen, L. R.

Coppinger, F.

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

Esman, R. D.

Frankel, M. Y.

Fujimoto, J. G.

Haus, H. A.

Ippen, E. P.

Jacobson, J.

Jalali, B.

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

Kang, J. U.

Leaird, D. E.

McKinney, J. D.

Seo, D.

Tamura, K.

Weiner, A. M.

IEEE Trans. Aerosp. Electron. Syst. (1)

W. J. Caputi, IEEE Trans. Aerosp. Electron. Syst. 7, 269 (1971).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the proposed microwave frequency-shifting technique based on a general temporal self-imaging (Talbot) effect.

Fig. 2
Fig. 2

Experimental setup: EDFA, erbium-doped fiber amplifier; C3, fiber coupler; PC, polarization controller; other notation defined in text.

Fig. 3
Fig. 3

Measured microwave signals at the output of the TI system (image magnification factor, Mt=0.2) for several input modulation frequencies (f1 near 10 GHz).

Fig. 4
Fig. 4

Autocorrelation traces that correspond to the optical signals measured (a) before and (b) after the second dispersive stage when the TI system is configured for achieving Mt=0.113, with f1=40 GHz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β¨2L2=NMt2πf12,
Mt=1+β¨2L2/β¨1L1.

Metrics