Abstract

A technique for simulating large optical path lengths by use of digital delay buffers is presented. This technique is used to generate a synthetic interferometer with one arm having an arbitrary length. The response of the interferometer to phase and frequency modulation is measured and found to be in agreement with predictions. This technique could be used to simulate long-baseline interferometric space missions such as the Laser Interferometer Space Antenna.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bender and K. Danzmann, and the LISA Study Team, “Laser Interferometer Space Antenna for the Detection of Gravitational Waves, Pre-Phase A Report,” 2nd ed., (Max-Planck-Institut fur Quantenoptik, Garching, Germany, 1998).
  2. R. W. P. Drever, J. L. Hall, F. V. Kovalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  3. A. Schenzle, R. G. DeVoe, and R. G. Brever, Phys. Rev. A 25, 2606 (1981).
    [CrossRef]
  4. J. Ye, L. S. Ma, and J. L. Hall, Phys. Rev. Lett. 87, 270801 (2001).
    [CrossRef]
  5. M. Tinto and J. W. Armstrong, Phys. Rev. D 59, 102003 (1999).
    [CrossRef]
  6. D. A. Shaddock, M. Tinto, F. B. Estabrook, and J. W. Armstrong, Phys. Rev. D 68, 061303 (2003).
    [CrossRef]
  7. B. S. Sheard, M. B. Gray, D. E. McClelland, and D. A. Shaddock, Phys. Lett. A 320, 9 (2003).
    [CrossRef]
  8. The authors are preparing a manuscript describing in detail an apparatus that will simulate the full LISA interferometry configuration.

2003 (2)

D. A. Shaddock, M. Tinto, F. B. Estabrook, and J. W. Armstrong, Phys. Rev. D 68, 061303 (2003).
[CrossRef]

B. S. Sheard, M. B. Gray, D. E. McClelland, and D. A. Shaddock, Phys. Lett. A 320, 9 (2003).
[CrossRef]

2001 (1)

J. Ye, L. S. Ma, and J. L. Hall, Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

1999 (1)

M. Tinto and J. W. Armstrong, Phys. Rev. D 59, 102003 (1999).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kovalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1981 (1)

A. Schenzle, R. G. DeVoe, and R. G. Brever, Phys. Rev. A 25, 2606 (1981).
[CrossRef]

Armstrong, J. W.

D. A. Shaddock, M. Tinto, F. B. Estabrook, and J. W. Armstrong, Phys. Rev. D 68, 061303 (2003).
[CrossRef]

M. Tinto and J. W. Armstrong, Phys. Rev. D 59, 102003 (1999).
[CrossRef]

Bender, P.

P. Bender and K. Danzmann, and the LISA Study Team, “Laser Interferometer Space Antenna for the Detection of Gravitational Waves, Pre-Phase A Report,” 2nd ed., (Max-Planck-Institut fur Quantenoptik, Garching, Germany, 1998).

Brever, R. G.

A. Schenzle, R. G. DeVoe, and R. G. Brever, Phys. Rev. A 25, 2606 (1981).
[CrossRef]

Danzmann, K.

P. Bender and K. Danzmann, and the LISA Study Team, “Laser Interferometer Space Antenna for the Detection of Gravitational Waves, Pre-Phase A Report,” 2nd ed., (Max-Planck-Institut fur Quantenoptik, Garching, Germany, 1998).

DeVoe, R. G.

A. Schenzle, R. G. DeVoe, and R. G. Brever, Phys. Rev. A 25, 2606 (1981).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kovalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Estabrook, F. B.

D. A. Shaddock, M. Tinto, F. B. Estabrook, and J. W. Armstrong, Phys. Rev. D 68, 061303 (2003).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kovalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Gray, M. B.

B. S. Sheard, M. B. Gray, D. E. McClelland, and D. A. Shaddock, Phys. Lett. A 320, 9 (2003).
[CrossRef]

Hall, J. L.

J. Ye, L. S. Ma, and J. L. Hall, Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kovalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kovalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kovalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kovalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ma, L. S.

J. Ye, L. S. Ma, and J. L. Hall, Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

McClelland, D. E.

B. S. Sheard, M. B. Gray, D. E. McClelland, and D. A. Shaddock, Phys. Lett. A 320, 9 (2003).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kovalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Schenzle, A.

A. Schenzle, R. G. DeVoe, and R. G. Brever, Phys. Rev. A 25, 2606 (1981).
[CrossRef]

Shaddock, D. A.

D. A. Shaddock, M. Tinto, F. B. Estabrook, and J. W. Armstrong, Phys. Rev. D 68, 061303 (2003).
[CrossRef]

B. S. Sheard, M. B. Gray, D. E. McClelland, and D. A. Shaddock, Phys. Lett. A 320, 9 (2003).
[CrossRef]

Sheard, B. S.

B. S. Sheard, M. B. Gray, D. E. McClelland, and D. A. Shaddock, Phys. Lett. A 320, 9 (2003).
[CrossRef]

Tinto, M.

D. A. Shaddock, M. Tinto, F. B. Estabrook, and J. W. Armstrong, Phys. Rev. D 68, 061303 (2003).
[CrossRef]

M. Tinto and J. W. Armstrong, Phys. Rev. D 59, 102003 (1999).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kovalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ye, J.

J. Ye, L. S. Ma, and J. L. Hall, Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kovalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Phys. Lett. A (1)

B. S. Sheard, M. B. Gray, D. E. McClelland, and D. A. Shaddock, Phys. Lett. A 320, 9 (2003).
[CrossRef]

Phys. Rev. A (1)

A. Schenzle, R. G. DeVoe, and R. G. Brever, Phys. Rev. A 25, 2606 (1981).
[CrossRef]

Phys. Rev. D (2)

M. Tinto and J. W. Armstrong, Phys. Rev. D 59, 102003 (1999).
[CrossRef]

D. A. Shaddock, M. Tinto, F. B. Estabrook, and J. W. Armstrong, Phys. Rev. D 68, 061303 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

J. Ye, L. S. Ma, and J. L. Hall, Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

Other (2)

The authors are preparing a manuscript describing in detail an apparatus that will simulate the full LISA interferometry configuration.

P. Bender and K. Danzmann, and the LISA Study Team, “Laser Interferometer Space Antenna for the Detection of Gravitational Waves, Pre-Phase A Report,” 2nd ed., (Max-Planck-Institut fur Quantenoptik, Garching, Germany, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental apparatus.

Fig. 2
Fig. 2

Michelson response versus frequency.

Fig. 3
Fig. 3

Response of Michelson to step change in frequency.

Fig. 4
Fig. 4

Graphical depiction of TPMω.

Fig. 5
Fig. 5

Michelson response to phase modulation.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Eit=E0 expiωt-2Li/c+ϕt-2Li/c+hit, i=2,3,
Sit=S01+V cosωτi+ϕt-ϕt-τi-hit,
St=S0 cosω12t+ϕ12t,
Mrftsinω12-Ω1t+ϕ12t+sinω12+Ω1t+ϕ12t,
MAtcosω12-Ω1τ+ϕ12t-ϕ12t-τ.
Mtϕt-ϕt-τ.
M˜fϕ˜f1-exp-2πifτ,
TPMfM˜f/ϕ˜f1-exp-2πifτ.
TPMfsinπfτ,
argTf=tan-1cotπfτ.

Metrics