Abstract

Numerical calculation of vector electromagnetic modes of plano–concave microcavities reveals that the polarization-dependent reflectivity of a flat Bragg mirror can lead to unexpected cavity field distribution for nominally paraxial modes. Even in a rotationally symmetric resonator, certain pairs of orbital angular momenta are necessarily mixed in an excitation-independent way to form doublets. A characteristic mixing angle is identified, which even in the paraxial limit can be designed to have large values. This correction to Gaussian theory is of zeroth order in deviations from paraxiality. We discuss the resultant nonuniform polarization fields. Observation will require small cavities with sufficiently high Q. Possible applications are proposed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription