Abstract

A new technique for reducing timing jitter by using a cascaded second-order nonlinear process in quasi-phase-matched (QPM) LiNbO3 waveguides is proposed. It was found that the timing jitter of a signal at QPM wavelength is not transferred to the converted pulses during cascading in a 30-mm-long LiNbO3 QPM waveguide. Timing-jitter transfer characteristics in QPM LiNbO3 waveguides are evaluated by calculation of pulse evolution, and retiming of 1.5-ps pulses in 10- and 30-mm-long waveguides is demonstrated experimentally.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
    [CrossRef]
  2. Y. Fukuchi and K. Kikuchi, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWB6.
  3. Y. Fukuchi and K. Kikuchi, in 27th European Conference on Optical Communication (ECOC 2001) (Institute of Electrical and Electronics Engineers, New York, 2001), p. 396.
  4. Y. Fukuchi and K. Kikuchi, IEEE Photon. Technol. Lett. 14, 1409 (2002).
    [CrossRef]
  5. H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, Opt. Quantum Electron. 33, 953 (2001).
    [CrossRef]

2003 (1)

T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
[CrossRef]

2002 (1)

Y. Fukuchi and K. Kikuchi, IEEE Photon. Technol. Lett. 14, 1409 (2002).
[CrossRef]

2001 (1)

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, Opt. Quantum Electron. 33, 953 (2001).
[CrossRef]

Fejer, M. M.

T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
[CrossRef]

Fujimura, M.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, Opt. Quantum Electron. 33, 953 (2001).
[CrossRef]

Fukuchi, Y.

Y. Fukuchi and K. Kikuchi, IEEE Photon. Technol. Lett. 14, 1409 (2002).
[CrossRef]

Y. Fukuchi and K. Kikuchi, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWB6.

Y. Fukuchi and K. Kikuchi, in 27th European Conference on Optical Communication (ECOC 2001) (Institute of Electrical and Electronics Engineers, New York, 2001), p. 396.

Ishii, M.

T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
[CrossRef]

Ishizuki, H.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, Opt. Quantum Electron. 33, 953 (2001).
[CrossRef]

Kawanishi, S.

T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
[CrossRef]

Kikuchi, K.

Y. Fukuchi and K. Kikuchi, IEEE Photon. Technol. Lett. 14, 1409 (2002).
[CrossRef]

Y. Fukuchi and K. Kikuchi, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWB6.

Y. Fukuchi and K. Kikuchi, in 27th European Conference on Optical Communication (ECOC 2001) (Institute of Electrical and Electronics Engineers, New York, 2001), p. 396.

Kitagawa, T.

T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
[CrossRef]

Kitoh, T.

T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
[CrossRef]

Mino, S.

T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
[CrossRef]

Mori, K.

T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
[CrossRef]

Nishihara, H.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, Opt. Quantum Electron. 33, 953 (2001).
[CrossRef]

Ohara, T.

T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
[CrossRef]

Parameswaran, K. P.

T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
[CrossRef]

Shake, I.

T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
[CrossRef]

Suhara, T.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, Opt. Quantum Electron. 33, 953 (2001).
[CrossRef]

Tanaka, H.

T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
[CrossRef]

Yamada, T.

T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Ohara, H. Tanaka, I. Shake, K. Mori, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, T. Kitoh, T. Kitagawa, K. P. Parameswaran, and M. M. Fejer, IEEE Photon. Technol. Lett. 15, 302 (2003).
[CrossRef]

Y. Fukuchi and K. Kikuchi, IEEE Photon. Technol. Lett. 14, 1409 (2002).
[CrossRef]

Opt. Quantum Electron. (1)

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, Opt. Quantum Electron. 33, 953 (2001).
[CrossRef]

Other (2)

Y. Fukuchi and K. Kikuchi, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWB6.

Y. Fukuchi and K. Kikuchi, in 27th European Conference on Optical Communication (ECOC 2001) (Institute of Electrical and Electronics Engineers, New York, 2001), p. 396.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Mechanism for retiming by a cascaded second-order process. δt is the shift in temporal position of the signal pulse; z is the propagation distance.

Fig. 2
Fig. 2

Evolution of waveforms of (a) the signal, (b) the clock, (c) the SH, and (d) the DF pulses.

Fig. 3
Fig. 3

Calculated retiming characteristics: (a) input–output timing characteristics and (b) the DF intensity relative to input timing.

Fig. 4
Fig. 4

Proposed regenerator configuration: LPF, low-pass filter; BPF, bandpass filter.

Fig. 5
Fig. 5

Experimental setup: ML-FRL, mode-locked fiber ring laser; DDF, dispersion-decreasing fiber; BPFs, bandpass filters; PCs, polarization controllers; EDFAs, erbium-doped fiber analyzers; Delay 1–Delay 3, optical delay lines.

Fig. 6
Fig. 6

Measured retiming characteristics: (a) input–output timing characteristics and (b) DF intensity versus input timing.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T=t-zvclock,

Metrics