Abstract

We present a novel implementation of high-resolution ultrasound-modulated optical tomography that, based on optical contrast, can image several millimeters deep into soft biological tissues. A long-cavity confocal Fabry–Perot interferometer, which provides a large etendue and a short response time, was used to detect the ultrasound-modulated coherent light that traversed the scattering biological tissue. Using 15-MHz ultrasound, we imaged with high-contrast light-absorbing structures placed >3 mm below the surface of chicken breast tissue. The resolution along the axial and the lateral directions with respect to the ultrasound propagation direction was better than 70 and 120 µm, respectively. The resolution can be scaled down further by use of higher ultrasound frequencies. This technology is complementary to other imaging technologies, such as confocal microscopy and optical-coherence tomography, and has the potential for broad biomedical applications.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
    [CrossRef]
  2. L.-H. V. Wang, S. L. Jacques, and X. Zhao, Opt. Lett. 20, 629 (1995).
    [CrossRef] [PubMed]
  3. W. Leutz and G. Maret, Physica B 204, 14 (1995).
    [CrossRef]
  4. L.-H. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
    [CrossRef]
  5. S. Sakadžić and L.-H. V. Wang, Phys. Rev. E 66, 026603 (2002).
    [CrossRef]
  6. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, J. Opt. Soc. Am. A 14, 1151 (1997).
    [CrossRef]
  7. L.-H. V. Wang and G. Ku, Opt. Lett. 23, 975 (1998).
    [CrossRef]
  8. S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, Opt. Lett. 24, 181 (1999).
    [CrossRef]
  9. G. Yao, S.-L. Jiao, and L.-H. V. Wang, Opt. Lett. 25, 734 (2000).
    [CrossRef]
  10. A. Lev, Z. Kotler, and B. G. Sfez, Opt. Lett. 25, 378 (2000).
    [CrossRef]
  11. M. Hisaka, T. Sugiura, and S. Kawata, J. Opt. Soc. Am. A 18, 1531 (2001).
    [CrossRef]
  12. J. Li, G. Ku, and L.-H. V. Wang, Appl. Opt. 41, 6030 (2002).
    [CrossRef] [PubMed]
  13. A. Lev and B. G. Sfez, Opt. Lett. 28, 1549 (2003).
    [CrossRef] [PubMed]
  14. M. Gross, P. Goy, and M. Al-Koussa, Opt. Lett. 28, 2482 (2003).
    [CrossRef] [PubMed]
  15. J. Li and L.-H. V. Wang, Appl. Phys. Lett. 84, 1597 (2004).
    [CrossRef]
  16. J.-P. Monchalin, Appl. Phys. Lett. 47, 14 (1985).
    [CrossRef]
  17. American Institute of Ultrasound in Medicine, “Mammalian in vivo ultrasonic biological effects” (1992), http://www.aium.org/ .

2004 (1)

J. Li and L.-H. V. Wang, Appl. Phys. Lett. 84, 1597 (2004).
[CrossRef]

2003 (2)

2002 (2)

J. Li, G. Ku, and L.-H. V. Wang, Appl. Opt. 41, 6030 (2002).
[CrossRef] [PubMed]

S. Sakadžić and L.-H. V. Wang, Phys. Rev. E 66, 026603 (2002).
[CrossRef]

2001 (2)

2000 (2)

1999 (1)

1998 (1)

1997 (1)

1995 (2)

1993 (1)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

1985 (1)

J.-P. Monchalin, Appl. Phys. Lett. 47, 14 (1985).
[CrossRef]

Al-Koussa, M.

Boccara, A. C.

Brooksby, G. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

Genack, A. Z.

Goy, P.

Gross, M.

Hisaka, M.

Jacques, S. L.

Jiao, S.-L.

Kawata, S.

Kempe, M.

Kotler, Z.

Ku, G.

Larionov, M.

Lebec, M.

Leutz, W.

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Lev, A.

Leveque, S.

Li, J.

J. Li and L.-H. V. Wang, Appl. Phys. Lett. 84, 1597 (2004).
[CrossRef]

J. Li, G. Ku, and L.-H. V. Wang, Appl. Opt. 41, 6030 (2002).
[CrossRef] [PubMed]

Maret, G.

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Marks, F. A.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

Monchalin, J.-P.

J.-P. Monchalin, Appl. Phys. Lett. 47, 14 (1985).
[CrossRef]

Saint-Jalmes, H.

Sakadžic, S.

S. Sakadžić and L.-H. V. Wang, Phys. Rev. E 66, 026603 (2002).
[CrossRef]

Sfez, B. G.

Sugiura, T.

Tomlinson, H. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

Wang, L.-H. V.

Yao, G.

Zaslavsky, D.

Zhao, X.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Li and L.-H. V. Wang, Appl. Phys. Lett. 84, 1597 (2004).
[CrossRef]

J.-P. Monchalin, Appl. Phys. Lett. 47, 14 (1985).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Lett. (7)

Phys. Rev. E (1)

S. Sakadžić and L.-H. V. Wang, Phys. Rev. E 66, 026603 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

L.-H. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef]

Physica B (1)

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Proc. SPIE (1)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

Other (1)

American Institute of Ultrasound in Medicine, “Mammalian in vivo ultrasonic biological effects” (1992), http://www.aium.org/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup: L, laser; TG, trigger generator; PR, pulser–receiver; UT, ultrasonic transducer; FO, focusing optics; CF, collecting fiber; S, sample; CO, coupling optics; PZT, piezoelectric transducer; BS, beam splitter; SH, shutter; PD, photo-detector. (b) Top view of the sample (S): UB, ultrasound beam; LB, incident light beam; CL, collected light; R, radius of curvature. Other abbreviations defined in text.

Fig. 2
Fig. 2

Temporal dependence of the ultrasound-modulated light intensity during the propagation of an ultrasound pulse through the sample.

Fig. 3
Fig. 3

Measurement of the axial and lateral resolutions. (a) Measurement and (b) image of an object, showing the axial resolution. (c) Measurement and (d) image of an object, showing the lateral resolution. (e) 1D axial profiles of intensity from the data in (a). (f) 1D lateral profile of intensity from the data in (c).

Metrics