Abstract

Using femtosecond laser machining, we fabricated a terahertz resonant cavity in LiNbO3. Optical pulse sequences with variable repetition rates, generated through a novel pulse-shaping method, are used for characterization of the cavity resonances and for amplification of terahertz phonon-polaritons in the cavity.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Feurer, J. C. Vaughan, and K. A. Nelson, Science 299, 374 (2003).
    [CrossRef] [PubMed]
  2. J. K. Wahlstrand and R. Merlin, Phys. Rev. B 68, 054301 (2003).
    [CrossRef]
  3. M. C. Nuss and D. H. Auston, J. Opt. Soc. Am. A 3, 13 (1986).
  4. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, J. Opt. Soc. Am. B 17, 851 (2000).
    [CrossRef]
  5. N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, Nat. Mater. 1, 95 (2002).
  6. N. S. Stoyanov, T. Feurer, D. W. Ward, E. Statz, and K. A. Nelson, Opt. Express 12, 2387 (2004); http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  7. L. Xu, D. H. Auston, and A. Hasegawa, Phys. Rev. A 45, 3184 (1993).
    [CrossRef]
  8. G. B. Schaffer, A. Brodeur, J. E. Garcia, and E. Mazur, Opt. Lett. 26, 93 (2001).
    [CrossRef]
  9. C. Glorieux, J. D. Beers, E. H. Bentefour, K. Van de Rostyne, and K. A. Nelson, “Phase-mask based interferomgram operation principle, performance, and application to thermoelastic phenomena,” Rev. Sci. Instrum. (to be published).
  10. D. W. Ward, E. Statz, N. S. Stoyanov, Z. Chen, T. Feurer, and K. A. Nelson, “Finite difference time domain (FDTD) simulations of phonon-polaritons in ferroelectric crystals: a comparison with experiments,” submitted to Phys. Rev. B.
  11. J. A. S. Barker and R. Loudon, Phys. Rev. 158, 433 (1967).
    [CrossRef]

2004 (1)

2003 (2)

T. Feurer, J. C. Vaughan, and K. A. Nelson, Science 299, 374 (2003).
[CrossRef] [PubMed]

J. K. Wahlstrand and R. Merlin, Phys. Rev. B 68, 054301 (2003).
[CrossRef]

2002 (1)

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, Nat. Mater. 1, 95 (2002).

2001 (1)

2000 (1)

1993 (1)

L. Xu, D. H. Auston, and A. Hasegawa, Phys. Rev. A 45, 3184 (1993).
[CrossRef]

1986 (1)

M. C. Nuss and D. H. Auston, J. Opt. Soc. Am. A 3, 13 (1986).

1967 (1)

J. A. S. Barker and R. Loudon, Phys. Rev. 158, 433 (1967).
[CrossRef]

Auston, D. H.

L. Xu, D. H. Auston, and A. Hasegawa, Phys. Rev. A 45, 3184 (1993).
[CrossRef]

M. C. Nuss and D. H. Auston, J. Opt. Soc. Am. A 3, 13 (1986).

Barker, J. A. S.

J. A. S. Barker and R. Loudon, Phys. Rev. 158, 433 (1967).
[CrossRef]

Beers, J. D.

C. Glorieux, J. D. Beers, E. H. Bentefour, K. Van de Rostyne, and K. A. Nelson, “Phase-mask based interferomgram operation principle, performance, and application to thermoelastic phenomena,” Rev. Sci. Instrum. (to be published).

Bentefour, E. H.

C. Glorieux, J. D. Beers, E. H. Bentefour, K. Van de Rostyne, and K. A. Nelson, “Phase-mask based interferomgram operation principle, performance, and application to thermoelastic phenomena,” Rev. Sci. Instrum. (to be published).

Brodeur, A.

Chen, Z.

D. W. Ward, E. Statz, N. S. Stoyanov, Z. Chen, T. Feurer, and K. A. Nelson, “Finite difference time domain (FDTD) simulations of phonon-polaritons in ferroelectric crystals: a comparison with experiments,” submitted to Phys. Rev. B.

Feurer, T.

N. S. Stoyanov, T. Feurer, D. W. Ward, E. Statz, and K. A. Nelson, Opt. Express 12, 2387 (2004); http://www.opticsexpress.org .
[CrossRef] [PubMed]

T. Feurer, J. C. Vaughan, and K. A. Nelson, Science 299, 374 (2003).
[CrossRef] [PubMed]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, Nat. Mater. 1, 95 (2002).

D. W. Ward, E. Statz, N. S. Stoyanov, Z. Chen, T. Feurer, and K. A. Nelson, “Finite difference time domain (FDTD) simulations of phonon-polaritons in ferroelectric crystals: a comparison with experiments,” submitted to Phys. Rev. B.

Gallot, G.

Garcia, J. E.

Glorieux, C.

C. Glorieux, J. D. Beers, E. H. Bentefour, K. Van de Rostyne, and K. A. Nelson, “Phase-mask based interferomgram operation principle, performance, and application to thermoelastic phenomena,” Rev. Sci. Instrum. (to be published).

Grischkowsky, D.

Hasegawa, A.

L. Xu, D. H. Auston, and A. Hasegawa, Phys. Rev. A 45, 3184 (1993).
[CrossRef]

Jamison, S. P.

Loudon, R.

J. A. S. Barker and R. Loudon, Phys. Rev. 158, 433 (1967).
[CrossRef]

Mazur, E.

McGowan, R. W.

Merlin, R.

J. K. Wahlstrand and R. Merlin, Phys. Rev. B 68, 054301 (2003).
[CrossRef]

Nelson, K. A.

N. S. Stoyanov, T. Feurer, D. W. Ward, E. Statz, and K. A. Nelson, Opt. Express 12, 2387 (2004); http://www.opticsexpress.org .
[CrossRef] [PubMed]

T. Feurer, J. C. Vaughan, and K. A. Nelson, Science 299, 374 (2003).
[CrossRef] [PubMed]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, Nat. Mater. 1, 95 (2002).

C. Glorieux, J. D. Beers, E. H. Bentefour, K. Van de Rostyne, and K. A. Nelson, “Phase-mask based interferomgram operation principle, performance, and application to thermoelastic phenomena,” Rev. Sci. Instrum. (to be published).

D. W. Ward, E. Statz, N. S. Stoyanov, Z. Chen, T. Feurer, and K. A. Nelson, “Finite difference time domain (FDTD) simulations of phonon-polaritons in ferroelectric crystals: a comparison with experiments,” submitted to Phys. Rev. B.

Nuss, M. C.

M. C. Nuss and D. H. Auston, J. Opt. Soc. Am. A 3, 13 (1986).

Schaffer, G. B.

Statz, E.

N. S. Stoyanov, T. Feurer, D. W. Ward, E. Statz, and K. A. Nelson, Opt. Express 12, 2387 (2004); http://www.opticsexpress.org .
[CrossRef] [PubMed]

D. W. Ward, E. Statz, N. S. Stoyanov, Z. Chen, T. Feurer, and K. A. Nelson, “Finite difference time domain (FDTD) simulations of phonon-polaritons in ferroelectric crystals: a comparison with experiments,” submitted to Phys. Rev. B.

Stoyanov, N. S.

N. S. Stoyanov, T. Feurer, D. W. Ward, E. Statz, and K. A. Nelson, Opt. Express 12, 2387 (2004); http://www.opticsexpress.org .
[CrossRef] [PubMed]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, Nat. Mater. 1, 95 (2002).

D. W. Ward, E. Statz, N. S. Stoyanov, Z. Chen, T. Feurer, and K. A. Nelson, “Finite difference time domain (FDTD) simulations of phonon-polaritons in ferroelectric crystals: a comparison with experiments,” submitted to Phys. Rev. B.

Van de Rostyne, K.

C. Glorieux, J. D. Beers, E. H. Bentefour, K. Van de Rostyne, and K. A. Nelson, “Phase-mask based interferomgram operation principle, performance, and application to thermoelastic phenomena,” Rev. Sci. Instrum. (to be published).

Vaughan, J. C.

T. Feurer, J. C. Vaughan, and K. A. Nelson, Science 299, 374 (2003).
[CrossRef] [PubMed]

Wahlstrand, J. K.

J. K. Wahlstrand and R. Merlin, Phys. Rev. B 68, 054301 (2003).
[CrossRef]

Ward, D. W.

N. S. Stoyanov, T. Feurer, D. W. Ward, E. Statz, and K. A. Nelson, Opt. Express 12, 2387 (2004); http://www.opticsexpress.org .
[CrossRef] [PubMed]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, Nat. Mater. 1, 95 (2002).

D. W. Ward, E. Statz, N. S. Stoyanov, Z. Chen, T. Feurer, and K. A. Nelson, “Finite difference time domain (FDTD) simulations of phonon-polaritons in ferroelectric crystals: a comparison with experiments,” submitted to Phys. Rev. B.

Xu, L.

L. Xu, D. H. Auston, and A. Hasegawa, Phys. Rev. A 45, 3184 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

M. C. Nuss and D. H. Auston, J. Opt. Soc. Am. A 3, 13 (1986).

J. Opt. Soc. Am. B (1)

Nat. Mater. (1)

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, Nat. Mater. 1, 95 (2002).

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

J. A. S. Barker and R. Loudon, Phys. Rev. 158, 433 (1967).
[CrossRef]

Phys. Rev. A (1)

L. Xu, D. H. Auston, and A. Hasegawa, Phys. Rev. A 45, 3184 (1993).
[CrossRef]

Phys. Rev. B (1)

J. K. Wahlstrand and R. Merlin, Phys. Rev. B 68, 054301 (2003).
[CrossRef]

Science (1)

T. Feurer, J. C. Vaughan, and K. A. Nelson, Science 299, 374 (2003).
[CrossRef] [PubMed]

Other (2)

C. Glorieux, J. D. Beers, E. H. Bentefour, K. Van de Rostyne, and K. A. Nelson, “Phase-mask based interferomgram operation principle, performance, and application to thermoelastic phenomena,” Rev. Sci. Instrum. (to be published).

D. W. Ward, E. Statz, N. S. Stoyanov, Z. Chen, T. Feurer, and K. A. Nelson, “Finite difference time domain (FDTD) simulations of phonon-polaritons in ferroelectric crystals: a comparison with experiments,” submitted to Phys. Rev. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Polariton resonator fabricated with femtosecond laser machining. The front face of the illustration is an optical micrograph of the structure. (b) Profile of a hole milled in LN indicates the presence of a bevel of approximately 7°. (c) Schematic illustration of the polariton excitation and probing arrangement. Seven evenly spaced excitation pulses whose repetition rate is adjusted through movement of a single translational stage are all focused to the same spot at the sample. A variably delayed probe pulse is used to monitor the time-dependent polariton responses through grating-based interferometry.

Fig. 2
Fig. 2

(a) Time-dependent polaritonic response of the LN resonator shown in Fig. 1(a) to a single excitation pulse. (b) Fourier transform of (a) and of the FDTD simulation of the response. The dark vertical bars indicate the uncertainties in the experimentally measured frequencies. The light vertical bars indicate the ranges of frequencies determined by reasonable variation of the simulation parameters. The discrepancy in the strength of the 400-GHz resonance is likely due to inaccuracy in the excitation spot size, which limits the polariton bandwidth.

Fig. 3
Fig. 3

(a) Time-dependent responses of the polariton resonator to excitation pulse trains with the repetition rates shown. The initial signal contributions t<0 are due largely to nonresonant electronic responses to the excitation pulses. The stronger and more persistent polariton responses observed when the resonator is driven at its cavity resonance frequencies are illustrated in (a) the time-dependent data and (b) the Fourier transforms. Driving frequency is indicated alongside each plot. (c) Relative amplitude of the 320-GHz Fourier component as a function of pump pulse train repetition rate.

Metrics