Abstract

Recent literature has reported impressive enhancements in hard-x-ray emission from short-lived solid plasmas by modulation of the interacting surface with nanostructures. We show that the modification of local electric fields near surface structures results in excessive absorption and enhanced x-ray production. A simple model based on local field variations explains the observed x-ray enhancements quantitatively.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures

Jonas Beermann, Andrey Evlyukhin, Alexandra Boltasseva, and Sergey I. Bozhevolnyi
J. Opt. Soc. Am. B 25(10) 1585-1592 (2008)

Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit

M. Meier, A. Wokaun, and P. F. Liao
J. Opt. Soc. Am. B 2(6) 931-949 (1985)

Enhanced x-ray emission from nano-particle doped bacteria

M. Krishnamurthy, M. Kundu, Kartik Bane, Amit D. Lad, Prashant Kumar Singh, Gourab Chatterjee, G. Ravindra Kumar, and Krishanu Ray
Opt. Express 23(14) 17909-17922 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription