Abstract

An analytical model has been developed and verified by numerical simulations to determine limits induced by stimulated Raman scattering (SRS) on parabolic pulse evolution in high-power, high-energy Yb-fiber amplifiers. Our results show that the maximum achievable parabolic pulse energies are limited by SRS at low amplifier gains and by the finite gain bandwidth at high gains. Therefore, an optimum gain value exists that maximizes the achievable output pulse energy.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
    [CrossRef] [PubMed]
  2. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, J. Opt. Soc. Am. B 19, 461 (2002).
    [CrossRef]
  3. C. Finot, G. Millot, C. Billet, and J. M. Dudley, Opt. Express 11, 1547 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  4. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zollner, H. J. Fuchs, E. B. Kley, H. Zellmer, and A. Tunnermann, Opt. Express 10, 628 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  5. G. P. Agrawal, in Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).
  6. R. G. Smith, Appl. Opt. 11, 2489 (1972).
    [CrossRef] [PubMed]

2003

2002

2000

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

1972

Agrawal, G. P.

G. P. Agrawal, in Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

Billet, C.

Clausnitzer, T.

Dudley, J. M.

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Finot, C.

Fuchs, H. J.

Harvey, J. D.

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, J. Opt. Soc. Am. B 19, 461 (2002).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Kley, E. B.

Kruglov, V. I.

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, J. Opt. Soc. Am. B 19, 461 (2002).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Limpert, J.

Millot, G.

Peacock, A. C.

Schreiber, T.

Smith, R. G.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Tunnermann, A.

Zellmer, H.

Zollner, K.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Comparison of analytical and numerical results for a fiber dispersion of 20 ps2 km-1, gain of 4 dB/m, and mode-field diameter of 27 µm. Left, The input signal is a 1-nJ Gaussian pulse. The solid and dashed curves represent numerical simulation and analytical results, respectively. PsL denotes the signal-pulse peak power and PrL the Raman-pulse peak power. Right, Excellent agreement between the analytical method and the numerical simulation for the calculation of the Raman threshold distance.

Fig. 2
Fig. 2

Dependence of the limitations for the maximum output signal energy on the fiber amplifier gain coefficient. Left, Finite gain bandwidth limitations and SRS limitations. Right, Given higher GVD, the maximum output signal energy limited by both effects increases. MFD, mode-field diameter.

Fig. 3
Fig. 3

Scalability of the maximum output pulse energy for different fiber amplifier gains with 1-nJ input signal energy and 20ps2 km-1 fiber GVD.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Asz+i2β2s2Ast2=iγsAs2+2-fRAr2As-gp2Ar2As+α2As,
Arz-dArT+i2β2r2Art2=iγrAr2+2-fRAs2Ar+gs2As2Ar+α2Ar,
Asz+i2β2s2Ast2=iγsAs2As+α2As,
Arz-dArT=iγr2-fRAs2Ar+gr2As2Ar+α2Ar.
Asz,T=A0 expα3z1-T2Tp2z1/2×uT+Tpz-uT-Tpz,
Arz,T=Ar0,T+zdexpαz2×expgr2+iγr2-fRψz,T,
ψz,T=0zAsz,T+zd-zd2dz.
ψz,T=0zA02 exp2α3z1-T+zd-zd2Tp2z×{u(T+zd-zd-Tpz]-uT+zd-zd+Tpz}dz.
ψz,Tmax0,T+zd-Tpz/dminz,T+zd+Tpz/dA02 exp2α3z×1-T+zd-zd2Tp2zdz.

Metrics