Abstract

We investigated the propagation of light in biological tissues that have aligned cylindrical microstructures (e.g., muscle, skin, bone, tooth). Because of pronounced anisotropic light scattering by cylindrical structures (e.g., myofibrils and collagen fibers) the spatially resolved reflectance exhibits a directional dependence that is different close to and far from the incident source. We applied Monte Carlo simulations, using the phase function of an infinitely long cylinder, to explain quantitatively the experimental results. These observations have consequences for noninvasive determination of the optical properties of tissue as well as for the diagnosis of early tissue alterations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription