Abstract

We report a novel digital-deflection programmable micromirror array driven by micromechanical digital-to-analog converters that eliminates the need for electrical digital-to-analog converters for analog displacement control, thus simplifying the driving circuitry and reducing the overall system cost. Furthermore, owing to the bistable and hysteretic characteristics of parallel-plate electrostatic actuators, an array of micromirrors can be controlled by means of row- and column-addressing lines, which drastically reduce the number of routing wires and allow array sizes to increase while they maintain high array quality.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Tuantranont and V. M. Bright, IEEE J. Sel. Top. Quantum Electron. 8, 33 (2002).
    [CrossRef]
  2. D. Koester, A. Cowen, R. Mahadevan, M. Stonefeld, and B. Hardy, “PolyMUMPS design handbook,” http://www.memscap.com/memsrus/svcrules.html .
  3. M. K. Lee, W. D. Cowan, B. M. Welsh, V. M. Bright, and M. C. Roggemann, Opt. Lett. 23, 645 (1998).
    [CrossRef]
  4. Y. Nemirovsky and O. Bochobza-Degani, J. Microelectromechan. Syst. 10, 601 (2001).
    [CrossRef]

2002 (1)

A. Tuantranont and V. M. Bright, IEEE J. Sel. Top. Quantum Electron. 8, 33 (2002).
[CrossRef]

2001 (1)

Y. Nemirovsky and O. Bochobza-Degani, J. Microelectromechan. Syst. 10, 601 (2001).
[CrossRef]

1998 (1)

Bochobza-Degani, O.

Y. Nemirovsky and O. Bochobza-Degani, J. Microelectromechan. Syst. 10, 601 (2001).
[CrossRef]

Bright, V. M.

A. Tuantranont and V. M. Bright, IEEE J. Sel. Top. Quantum Electron. 8, 33 (2002).
[CrossRef]

M. K. Lee, W. D. Cowan, B. M. Welsh, V. M. Bright, and M. C. Roggemann, Opt. Lett. 23, 645 (1998).
[CrossRef]

Cowan, W. D.

Lee, M. K.

Nemirovsky, Y.

Y. Nemirovsky and O. Bochobza-Degani, J. Microelectromechan. Syst. 10, 601 (2001).
[CrossRef]

Roggemann, M. C.

Tuantranont, A.

A. Tuantranont and V. M. Bright, IEEE J. Sel. Top. Quantum Electron. 8, 33 (2002).
[CrossRef]

Welsh, B. M.

IEEE J. Sel. Top. Quantum Electron. (1)

A. Tuantranont and V. M. Bright, IEEE J. Sel. Top. Quantum Electron. 8, 33 (2002).
[CrossRef]

J. Microelectromechan. Syst. (1)

Y. Nemirovsky and O. Bochobza-Degani, J. Microelectromechan. Syst. 10, 601 (2001).
[CrossRef]

Opt. Lett. (1)

Other (1)

D. Koester, A. Cowen, R. Mahadevan, M. Stonefeld, and B. Hardy, “PolyMUMPS design handbook,” http://www.memscap.com/memsrus/svcrules.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a digital-deflection micromirror: LSB, least significant bit; MSB, most significant bit.

Fig. 2
Fig. 2

Scanning electron microscope image of the digital-deflection micromirror array.

Fig. 3
Fig. 3

Static deflection measurement results (lines drawn for clarity).

Fig. 4
Fig. 4

Surface profiles along line AA, showing the response of the micromirror to the input binary control code.

Fig. 5
Fig. 5

Measured bistable characteristics of both Bit1 and Bit2 actuator pairs and the voltage levels used for programming the micromirror array.

Fig. 6
Fig. 6

Routing of the 2-bit digital-deflection programmable micromirror array.

Fig. 7
Fig. 7

Surface profiles of the micromirror array after desired patterns (a) + and (b) × were written.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Kx1-x+2Kx2-x++2i-1Kxi-x++2N-1KxN-x=KLx,
xi=biΔ,
x=2N-1KΔKL+2N-1K12N-1i=1N2i-1bi.

Metrics