Abstract

Glancing-angle deposition (GLAD) is a fabrication method capable of producing thin films with engineered nanoscale porosity variations. GLAD can be used to create optical thin-film interference filters from a single source material by modification of the film refractive index through control of film porosity. We present the effects of introducing a layer of constant low density into the center of a rugate thin-film filter fabricated with the GLAD technique. A rugate filter is characterized by a sinusoidal refractive-index profile. Embedding a layer of constant refractive index, with a thickness equal to one period of the rugate index variation, causes a narrow bandpass to appear within the filter’s larger stop band. Transmittance measurements of such a gradient-index narrow-bandpass filter, formed with titanium dioxide, revealed an 83% transmittance peak at a vacuum wavelength of 522 nm, near the center of the stop band, with a FWHM bandwidth of 15 nm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. MacLeod, Thin-Film Optical Filters, 2nd ed. (McGraw-Hill, New York, 1986).
    [CrossRef]
  2. W. H. Southwell, J. Opt. Soc. Am. A 5, 1558 (1988).
    [CrossRef]
  3. W. H. Southwell, Appl. Opt. 28, 5091 (1989).
    [CrossRef] [PubMed]
  4. H. A. Abu-Safia, A. I. Al-Sharif, and I. O. A. Aljarayesh, Appl. Opt. 32, 4831 (1993).
    [CrossRef] [PubMed]
  5. S. R. Kennedy and M. J. Brett, Appl. Opt. 42, 4573 (2003).
    [CrossRef] [PubMed]
  6. B. G. Bovard, Appl. Opt. 32, 5427 (1993).
    [CrossRef] [PubMed]
  7. M. F. Ouellette, R. V. Lang, K. L. Yan, R. W. Bertram, R. S. Owles, and D. Vincent, J. Vac. Sci. Technol. A 9, 1188 (1991).
    [CrossRef]
  8. W. J. Gunning, R. L. Hall, F. J. Woodberry, W. H. Southwell, and N. S. Gluck, Appl. Opt. 28, 2945 (1989).
    [CrossRef] [PubMed]
  9. R. Vernhes, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, Appl. Opt. 43, 97 (2004).
    [CrossRef] [PubMed]
  10. E. P. Donovan, D. Van Vechten, A. D. F. Kahn, C. A. Carosella, and G. K. Hubler, Appl. Opt. 28, 2940 (1989).
    [CrossRef] [PubMed]
  11. K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, and J. N. McMullin, Electron. Lett. 33, 1213 (1997).
    [CrossRef]
  12. K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, Appl. Opt. 42, 4212 (2003).
    [CrossRef] [PubMed]
  13. K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, J. Vac. Sci. Technol. A 13, 1032 (1995).
    [CrossRef]
  14. K. Robbie, M. J. Brett, and A. Lakhtakia, Nature 384, 616 (1996).
    [CrossRef]
  15. K. Robbie and M. J. Brett, “Method of depositing shadow sculpted thin films,” U.S. patent5,866,204 (February2, 1999).
  16. K. Robbie and M. J. Brett, J. Vac. Sci. Technol. A 15, 1460 (1997).
    [CrossRef]
  17. K. Robbie, J. C. Sit, and M. J. Brett, J. Vac. Sci. Technol. B 16, 1115 (1998).
    [CrossRef]
  18. A. C. van Popta, J. C. Sit, and M. J. Brett, Proc. SPIE 5464, 198 (2004).
    [CrossRef]

2004 (2)

2003 (2)

1998 (1)

K. Robbie, J. C. Sit, and M. J. Brett, J. Vac. Sci. Technol. B 16, 1115 (1998).
[CrossRef]

1997 (2)

K. Robbie and M. J. Brett, J. Vac. Sci. Technol. A 15, 1460 (1997).
[CrossRef]

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, and J. N. McMullin, Electron. Lett. 33, 1213 (1997).
[CrossRef]

1996 (1)

K. Robbie, M. J. Brett, and A. Lakhtakia, Nature 384, 616 (1996).
[CrossRef]

1995 (1)

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, J. Vac. Sci. Technol. A 13, 1032 (1995).
[CrossRef]

1993 (2)

1991 (1)

M. F. Ouellette, R. V. Lang, K. L. Yan, R. W. Bertram, R. S. Owles, and D. Vincent, J. Vac. Sci. Technol. A 9, 1188 (1991).
[CrossRef]

1989 (3)

1988 (1)

Abu-Safia, H. A.

Aljarayesh, I. O. A.

Al-Sharif, A. I.

Bertram, R. W.

M. F. Ouellette, R. V. Lang, K. L. Yan, R. W. Bertram, R. S. Owles, and D. Vincent, J. Vac. Sci. Technol. A 9, 1188 (1991).
[CrossRef]

Beydaghyan, G.

Bovard, B. G.

Brett, M. J.

A. C. van Popta, J. C. Sit, and M. J. Brett, Proc. SPIE 5464, 198 (2004).
[CrossRef]

S. R. Kennedy and M. J. Brett, Appl. Opt. 42, 4573 (2003).
[CrossRef] [PubMed]

K. Robbie, J. C. Sit, and M. J. Brett, J. Vac. Sci. Technol. B 16, 1115 (1998).
[CrossRef]

K. Robbie and M. J. Brett, J. Vac. Sci. Technol. A 15, 1460 (1997).
[CrossRef]

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, and J. N. McMullin, Electron. Lett. 33, 1213 (1997).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, Nature 384, 616 (1996).
[CrossRef]

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, J. Vac. Sci. Technol. A 13, 1032 (1995).
[CrossRef]

K. Robbie and M. J. Brett, “Method of depositing shadow sculpted thin films,” U.S. patent5,866,204 (February2, 1999).

Brown, T.

Carosella, C. A.

Dew, S. K.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, J. Vac. Sci. Technol. A 13, 1032 (1995).
[CrossRef]

Donovan, E. P.

Friedrich, L. J.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, J. Vac. Sci. Technol. A 13, 1032 (1995).
[CrossRef]

Gluck, N. S.

Gunning, W. J.

Hall, R. L.

Hnatiw, A. J. P.

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, and J. N. McMullin, Electron. Lett. 33, 1213 (1997).
[CrossRef]

Hubler, G. K.

Kahn, A. D. F.

Kaminska, K.

Kennedy, S. R.

Klemberg-Sapieha, J. E.

Lakhtakia, A.

K. Robbie, M. J. Brett, and A. Lakhtakia, Nature 384, 616 (1996).
[CrossRef]

Lang, R. V.

M. F. Ouellette, R. V. Lang, K. L. Yan, R. W. Bertram, R. S. Owles, and D. Vincent, J. Vac. Sci. Technol. A 9, 1188 (1991).
[CrossRef]

MacDonald, R. I.

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, and J. N. McMullin, Electron. Lett. 33, 1213 (1997).
[CrossRef]

MacLeod, H. A.

H. A. MacLeod, Thin-Film Optical Filters, 2nd ed. (McGraw-Hill, New York, 1986).
[CrossRef]

Martinu, L.

McMullin, J. N.

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, and J. N. McMullin, Electron. Lett. 33, 1213 (1997).
[CrossRef]

Ouellette, M. F.

M. F. Ouellette, R. V. Lang, K. L. Yan, R. W. Bertram, R. S. Owles, and D. Vincent, J. Vac. Sci. Technol. A 9, 1188 (1991).
[CrossRef]

Owles, R. S.

M. F. Ouellette, R. V. Lang, K. L. Yan, R. W. Bertram, R. S. Owles, and D. Vincent, J. Vac. Sci. Technol. A 9, 1188 (1991).
[CrossRef]

Robbie, K.

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, Appl. Opt. 42, 4212 (2003).
[CrossRef] [PubMed]

K. Robbie, J. C. Sit, and M. J. Brett, J. Vac. Sci. Technol. B 16, 1115 (1998).
[CrossRef]

K. Robbie and M. J. Brett, J. Vac. Sci. Technol. A 15, 1460 (1997).
[CrossRef]

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, and J. N. McMullin, Electron. Lett. 33, 1213 (1997).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, Nature 384, 616 (1996).
[CrossRef]

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, J. Vac. Sci. Technol. A 13, 1032 (1995).
[CrossRef]

K. Robbie and M. J. Brett, “Method of depositing shadow sculpted thin films,” U.S. patent5,866,204 (February2, 1999).

Sit, J. C.

A. C. van Popta, J. C. Sit, and M. J. Brett, Proc. SPIE 5464, 198 (2004).
[CrossRef]

K. Robbie, J. C. Sit, and M. J. Brett, J. Vac. Sci. Technol. B 16, 1115 (1998).
[CrossRef]

Smy, T.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, J. Vac. Sci. Technol. A 13, 1032 (1995).
[CrossRef]

Southwell, W. H.

van Popta, A. C.

A. C. van Popta, J. C. Sit, and M. J. Brett, Proc. SPIE 5464, 198 (2004).
[CrossRef]

Van Vechten, D.

Vernhes, R.

Vincent, D.

M. F. Ouellette, R. V. Lang, K. L. Yan, R. W. Bertram, R. S. Owles, and D. Vincent, J. Vac. Sci. Technol. A 9, 1188 (1991).
[CrossRef]

Woodberry, F. J.

Yan, K. L.

M. F. Ouellette, R. V. Lang, K. L. Yan, R. W. Bertram, R. S. Owles, and D. Vincent, J. Vac. Sci. Technol. A 9, 1188 (1991).
[CrossRef]

Zabeida, O.

Appl. Opt. (8)

Electron. Lett. (1)

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, and J. N. McMullin, Electron. Lett. 33, 1213 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. A (3)

K. Robbie and M. J. Brett, J. Vac. Sci. Technol. A 15, 1460 (1997).
[CrossRef]

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, J. Vac. Sci. Technol. A 13, 1032 (1995).
[CrossRef]

M. F. Ouellette, R. V. Lang, K. L. Yan, R. W. Bertram, R. S. Owles, and D. Vincent, J. Vac. Sci. Technol. A 9, 1188 (1991).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. Robbie, J. C. Sit, and M. J. Brett, J. Vac. Sci. Technol. B 16, 1115 (1998).
[CrossRef]

Nature (1)

K. Robbie, M. J. Brett, and A. Lakhtakia, Nature 384, 616 (1996).
[CrossRef]

Proc. SPIE (1)

A. C. van Popta, J. C. Sit, and M. J. Brett, Proc. SPIE 5464, 198 (2004).
[CrossRef]

Other (2)

H. A. MacLeod, Thin-Film Optical Filters, 2nd ed. (McGraw-Hill, New York, 1986).
[CrossRef]

K. Robbie and M. J. Brett, “Method of depositing shadow sculpted thin films,” U.S. patent5,866,204 (February2, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Design of refractive-index profile for a narrow-bandpass rugate filter. The index profile consists of a layer of constant low index, equal in thickness to one period of the rugate index oscillation, with a section of five sinusoidal periods on either side.

Fig. 2
Fig. 2

Schematic of the GLAD setup. One stepper motor controls deposition angle α, and a second stepper motor is used for substrate rotation φ about the substrate normal. CTM, crystal-thickness monitor.

Fig. 3
Fig. 3

Scanning electron micrograph of an 11-period narrow-bandpass rugate filter grown with GLAD. The horizontal light and dark bands correspond to periodic layers of high and low density, respectively. The bracket in the right-hand margin identifies the location of the low-density spacing layer.

Fig. 4
Fig. 4

Measured transmittance spectrum of an 11-period narrow-bandpass TiO2 rugate filter on a glass substrate. The narrow bandpass is produced by a low-index spacing layer located midway through the film. The spectral peak has a magnitude of 83% and occurs at a vacuum wavelength of 522 nm. The reduction in transmittance at shorter wavelengths is due to the presence of an absorption edge.

Fig. 5
Fig. 5

Transmittance spectrum of an 11-period TiO2 rugate filter grown without a low-index spacing layer. The passband is absent for this film structure.

Metrics