Abstract

Optoacoustic imaging takes advantage of high optical contrast and low acoustic scattering and has found several biomedical applications. In the common backward mode a laser beam illuminates the image object, and an acoustic transducer located on the same side as the laser beam detects the optoacoustic signal produced by thermoelastic effects. A cross-sectional image is formed by laterally scanning the laser beam and the transducer. Although the laser beam width is generally narrow to provide good lateral resolution, strong optical scattering in tissue broadens the optical illumination pattern and thus degrades the lateral resolution. To solve this problem, a combination of the synthetic aperture focusing technique with coherence weighting is proposed. This method synthesizes a large aperture by summing properly delayed signals received at different positions. The focusing quality is further improved by using the signal coherence as an image quality index. A phantom comprising hair threads in a 1% milk solution was imaged with an optoacoustic imaging system. The results show that the proposed technique improved lateral resolution by 400–800% and the signal-to-noise ratio by 7–23 dB over conventional techniques.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Karabutov, E. V. Savateeva, N. B. Podymova, and A. A. Oraevsky, J. Appl. Phys. 87, 2003 (2000).
    [CrossRef]
  2. R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, IEEE J. Sel. Top. Quantum Electron. 5, 981 (1999).
    [CrossRef]
  3. J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, Proc. SPIE 4960, 14 (2003).
    [CrossRef]
  4. R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, Appl. Opt. 41, 4722 (2002).
    [CrossRef] [PubMed]
  5. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
    [CrossRef] [PubMed]
  6. C. G. A. Hoelen and F. F. M. de Mul, Appl. Opt. 39, 5872 (2000).
    [CrossRef]
  7. P.-C. Li and M.-L. Li, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 128 (2003).
    [CrossRef] [PubMed]
  8. M.-L. Li, W. J. Guan, and P.-C. Li, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 63 (2004).
    [CrossRef] [PubMed]
  9. “Significance of wavelength range for effective hair photo-epilation,” (2004), http://www.depilazione.net/news4.htm .
  10. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, F. F. M. de Mul, and T. G. van Leeuwen, Proc. SPIE 4960, 64 (2003).
    [CrossRef]
  11. J. J. Niederhauser, M. Jaeger, and M. Frenz, Proc. SPIE 4960, 118 (2003).
    [CrossRef]

2004 (1)

M.-L. Li, W. J. Guan, and P.-C. Li, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 63 (2004).
[CrossRef] [PubMed]

2003 (5)

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, F. F. M. de Mul, and T. G. van Leeuwen, Proc. SPIE 4960, 64 (2003).
[CrossRef]

J. J. Niederhauser, M. Jaeger, and M. Frenz, Proc. SPIE 4960, 118 (2003).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, Proc. SPIE 4960, 14 (2003).
[CrossRef]

P.-C. Li and M.-L. Li, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 128 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (2)

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, and A. A. Oraevsky, J. Appl. Phys. 87, 2003 (2000).
[CrossRef]

C. G. A. Hoelen and F. F. M. de Mul, Appl. Opt. 39, 5872 (2000).
[CrossRef]

1999 (1)

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, IEEE J. Sel. Top. Quantum Electron. 5, 981 (1999).
[CrossRef]

Aguilar, G.

J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, Proc. SPIE 4960, 14 (2003).
[CrossRef]

Choi, B.

J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, Proc. SPIE 4960, 14 (2003).
[CrossRef]

de Mul, F. F. M.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, F. F. M. de Mul, and T. G. van Leeuwen, Proc. SPIE 4960, 64 (2003).
[CrossRef]

C. G. A. Hoelen and F. F. M. de Mul, Appl. Opt. 39, 5872 (2000).
[CrossRef]

Deyo, D. J.

Esenaliev, R. O.

R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, Appl. Opt. 41, 4722 (2002).
[CrossRef] [PubMed]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, IEEE J. Sel. Top. Quantum Electron. 5, 981 (1999).
[CrossRef]

Frenz, M.

J. J. Niederhauser, M. Jaeger, and M. Frenz, Proc. SPIE 4960, 118 (2003).
[CrossRef]

Guan, W. J.

M.-L. Li, W. J. Guan, and P.-C. Li, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 63 (2004).
[CrossRef] [PubMed]

Hoelen, C. G. A.

Jaeger, M.

J. J. Niederhauser, M. Jaeger, and M. Frenz, Proc. SPIE 4960, 118 (2003).
[CrossRef]

Karabutov, A. A.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, and A. A. Oraevsky, J. Appl. Phys. 87, 2003 (2000).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, IEEE J. Sel. Top. Quantum Electron. 5, 981 (1999).
[CrossRef]

Kharine, A.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, F. F. M. de Mul, and T. G. van Leeuwen, Proc. SPIE 4960, 64 (2003).
[CrossRef]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Larin, K. V.

Larina, I. V.

Li, M.-L.

M.-L. Li, W. J. Guan, and P.-C. Li, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 63 (2004).
[CrossRef] [PubMed]

P.-C. Li and M.-L. Li, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 128 (2003).
[CrossRef] [PubMed]

Li, P.-C.

M.-L. Li, W. J. Guan, and P.-C. Li, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 63 (2004).
[CrossRef] [PubMed]

P.-C. Li and M.-L. Li, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 128 (2003).
[CrossRef] [PubMed]

Manohar, S.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, F. F. M. de Mul, and T. G. van Leeuwen, Proc. SPIE 4960, 64 (2003).
[CrossRef]

Motamedi, M.

Nelson, J. S.

J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, Proc. SPIE 4960, 14 (2003).
[CrossRef]

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, and M. Frenz, Proc. SPIE 4960, 118 (2003).
[CrossRef]

Oraevsky, A. A.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, and A. A. Oraevsky, J. Appl. Phys. 87, 2003 (2000).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, IEEE J. Sel. Top. Quantum Electron. 5, 981 (1999).
[CrossRef]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Podymova, N. B.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, and A. A. Oraevsky, J. Appl. Phys. 87, 2003 (2000).
[CrossRef]

Prough, D. S.

Savateeva, E. V.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, and A. A. Oraevsky, J. Appl. Phys. 87, 2003 (2000).
[CrossRef]

Steenbergen, W.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, F. F. M. de Mul, and T. G. van Leeuwen, Proc. SPIE 4960, 64 (2003).
[CrossRef]

Stoica, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Svaasand, L. O.

J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, Proc. SPIE 4960, 14 (2003).
[CrossRef]

van Hespen, J. C. G.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, F. F. M. de Mul, and T. G. van Leeuwen, Proc. SPIE 4960, 64 (2003).
[CrossRef]

van Leeuwen, T. G.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, F. F. M. de Mul, and T. G. van Leeuwen, Proc. SPIE 4960, 64 (2003).
[CrossRef]

Viator, J. A.

J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, Proc. SPIE 4960, 14 (2003).
[CrossRef]

Wang, L. V.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, IEEE J. Sel. Top. Quantum Electron. 5, 981 (1999).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

P.-C. Li and M.-L. Li, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 128 (2003).
[CrossRef] [PubMed]

M.-L. Li, W. J. Guan, and P.-C. Li, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 63 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, and A. A. Oraevsky, J. Appl. Phys. 87, 2003 (2000).
[CrossRef]

Nat. Biotechnol. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Proc. SPIE (3)

J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, Proc. SPIE 4960, 14 (2003).
[CrossRef]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, F. F. M. de Mul, and T. G. van Leeuwen, Proc. SPIE 4960, 64 (2003).
[CrossRef]

J. J. Niederhauser, M. Jaeger, and M. Frenz, Proc. SPIE 4960, 118 (2003).
[CrossRef]

Other (1)

“Significance of wavelength range for effective hair photo-epilation,” (2004), http://www.depilazione.net/news4.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Graphical illustration of the SAFT technique.

Fig. 2
Fig. 2

Delayed scan lines. (a) Case in which the point OA source is in the direction of the synthesized beam without focusing errors. (b) Case in which the point OA source is not in the direction of the synthesized beam, corresponding to a steering error. The vertical axis is the depth, and the horizontal axis is the synthesized aperture direction.

Fig. 3
Fig. 3

Images of the OA phantom containing six hair threads: (a) original image, (b) SAFT image, (c) SAFT-plus-CFW image. The dynamic range is 30 dB. The vertical axis is the depth, and the horizontal axis is the lateral position, both in millimeters.

Fig. 4
Fig. 4

Images of the cylindrical object: (a) original image, (b) SAFT image, (c) SAFT-plus-CFW image. The phantom consisted of poly(vinyl alcohol)10 gel and was located at a depth of 5 mm. The diameter was 3.5 mm and had an absorption coefficient of 4.42 cm-1. The milk solution has a scattering coefficient of 3.69 cm-1.

Tables (1)

Tables Icon

Table 1 Lateral Width (at -6 dB) and SNR Values

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

RFSAFTt=i=0N-1RFi,t-Δti,
CFt=i=0N-1RFi,t-Δti2Ni=0N-1RFi,t-Δti2.
RFweightedt=RFSAFTtCFt.

Metrics