Abstract

By use of the Fourier decomposition of a low-coherence optical image field into two spatial components that can be controllably shifted in phase with respect to each other, a new high-transverse-resolution quantitative-phase microscope has been developed. The technique transforms a typical optical microscope into a quantitative-phase microscope, with high accuracy and a path-length sensitivity of λ/5500, which is stable over several hours. The results obtained on epithelial and red blood cells demonstrate the potential of this instrument for quantitative investigation of the structure and dynamics associated with biological systems without sample preparation.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Zernike, Physica 9, 686 (1942).
    [CrossRef]
  2. F. H. Smith, Research (London) 8, 385 (1955).
  3. K. Creath, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Vol. 26, p. 349.
    [CrossRef]
  4. A. Dubois, L. Vabre, and A. C. Bocara, Opt. Lett. 26, 1873 (2001).
    [CrossRef]
  5. E. Cuche, F. Bevilacqua, and C. Depeursinge, Opt. Lett. 24, 291 (1999).
    [CrossRef]
  6. I. Yamaguchi and T. Zhang, Opt. Lett. 22, 1268 (1997).
    [CrossRef] [PubMed]
  7. C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, Opt. Lett. 26, 1271 (2001).
    [CrossRef]
  8. G. A. Dunn and D. Zicha, in Cell Biology: a Laboratory Handbook, 2nd ed., J. Celis ed. (Academic, San Diego, Calif., 1997), pp. 44–53.
  9. D. Paganin and K. A. Nugent, Phys. Rev. Lett. 80, 2586 (1998).
    [CrossRef]
  10. E. Abbe, Arch. Mikrosk. Anat. Entwicklungsmech. 9, 431 (1873).
  11. H. Kadono, M. Ogusu, and S. Toyooka, Opt. Commun. 110, 391 (1994).
    [CrossRef]
  12. A. Y. M. Ng, C. W. See, and M. G. Somekh, J. Microsc. 216, 334 (2004).
    [CrossRef]

2004 (1)

A. Y. M. Ng, C. W. See, and M. G. Somekh, J. Microsc. 216, 334 (2004).
[CrossRef]

2001 (2)

1999 (1)

1998 (1)

D. Paganin and K. A. Nugent, Phys. Rev. Lett. 80, 2586 (1998).
[CrossRef]

1997 (1)

1994 (1)

H. Kadono, M. Ogusu, and S. Toyooka, Opt. Commun. 110, 391 (1994).
[CrossRef]

1955 (1)

F. H. Smith, Research (London) 8, 385 (1955).

1942 (1)

F. Zernike, Physica 9, 686 (1942).
[CrossRef]

1873 (1)

E. Abbe, Arch. Mikrosk. Anat. Entwicklungsmech. 9, 431 (1873).

Abbe, E.

E. Abbe, Arch. Mikrosk. Anat. Entwicklungsmech. 9, 431 (1873).

Badizadegan, K.

Bevilacqua, F.

Bocara, A. C.

Creath, K.

K. Creath, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Vol. 26, p. 349.
[CrossRef]

Cuche, E.

Dasari, R. R.

Depeursinge, C.

Dubois, A.

Dunn, G. A.

G. A. Dunn and D. Zicha, in Cell Biology: a Laboratory Handbook, 2nd ed., J. Celis ed. (Academic, San Diego, Calif., 1997), pp. 44–53.

Feld, M. S.

Hahn, M. S.

Kadono, H.

H. Kadono, M. Ogusu, and S. Toyooka, Opt. Commun. 110, 391 (1994).
[CrossRef]

Ng, A. Y. M.

A. Y. M. Ng, C. W. See, and M. G. Somekh, J. Microsc. 216, 334 (2004).
[CrossRef]

Nugent, K. A.

D. Paganin and K. A. Nugent, Phys. Rev. Lett. 80, 2586 (1998).
[CrossRef]

Ogusu, M.

H. Kadono, M. Ogusu, and S. Toyooka, Opt. Commun. 110, 391 (1994).
[CrossRef]

Paganin, D.

D. Paganin and K. A. Nugent, Phys. Rev. Lett. 80, 2586 (1998).
[CrossRef]

See, C. W.

A. Y. M. Ng, C. W. See, and M. G. Somekh, J. Microsc. 216, 334 (2004).
[CrossRef]

Smith, F. H.

F. H. Smith, Research (London) 8, 385 (1955).

Somekh, M. G.

A. Y. M. Ng, C. W. See, and M. G. Somekh, J. Microsc. 216, 334 (2004).
[CrossRef]

Toyooka, S.

H. Kadono, M. Ogusu, and S. Toyooka, Opt. Commun. 110, 391 (1994).
[CrossRef]

Vabre, L.

Wax, A.

Yamaguchi, I.

Yang, C.

Zernike, F.

F. Zernike, Physica 9, 686 (1942).
[CrossRef]

Zhang, T.

Zicha, D.

G. A. Dunn and D. Zicha, in Cell Biology: a Laboratory Handbook, 2nd ed., J. Celis ed. (Academic, San Diego, Calif., 1997), pp. 44–53.

Arch. Mikrosk. Anat. Entwicklungsmech. (1)

E. Abbe, Arch. Mikrosk. Anat. Entwicklungsmech. 9, 431 (1873).

J. Microsc. (1)

A. Y. M. Ng, C. W. See, and M. G. Somekh, J. Microsc. 216, 334 (2004).
[CrossRef]

Opt. Commun. (1)

H. Kadono, M. Ogusu, and S. Toyooka, Opt. Commun. 110, 391 (1994).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

D. Paganin and K. A. Nugent, Phys. Rev. Lett. 80, 2586 (1998).
[CrossRef]

Physica (1)

F. Zernike, Physica 9, 686 (1942).
[CrossRef]

Research (London) (1)

F. H. Smith, Research (London) 8, 385 (1955).

Other (2)

K. Creath, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Vol. 26, p. 349.
[CrossRef]

G. A. Dunn and D. Zicha, in Cell Biology: a Laboratory Handbook, 2nd ed., J. Celis ed. (Academic, San Diego, Calif., 1997), pp. 44–53.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Experimental results for polystyrene microspheres in glycerol by use of a 10× microscope objective: a, intensity image; b, phase-contrast image; c, FPM image. The gray-scale bar represents the path-length shift in nanometers. d, Optical path-length temporal fluctuations in the absence of particles.

Fig. 3
Fig. 3

FPM images obtained with a 40× microscope objective: a, phase image of a HeLa cell undergoing mitosis; b, phase image of whole blood smear. The color bars represent optical path length in nanometers.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ix,y;n=E02+E1x,y2+2E0E1x,y×cosΔϕx,y+nπ/2,    n=0,1,2,3.
ϕx,y=tan-1βx,ysinΔϕx,y1+βx,ycosΔϕx,y,
βx,y=γIx,y;0-Ix,y;2+Ix,y;3-Ix,y;1sinΔϕx,y+cosΔϕx,y.

Metrics