Abstract

High-contrast microscopy of semiconductor and metal sites in integrated circuits is demonstrated with laser-scanning confocal reflectance microscopy, one-photon (1P) optical-beam-induced current (OBIC) imaging, and detection of optical feedback by means of a commercially available semiconductor laser that also acts as an excitation source. The confocal microscope has a compact in-line arrangement with no external photodetector. Confocal and 1P OBIC images are obtained simultaneously from the same focused beam scanned across the sample plane. Image pairs are processed to generate exclusive high-contrast distributions of semiconductor, metal, and dielectric sites in a GaAs photodiode array sample.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Wagner, Microelectron. Reliab. 43, 1369 (2003).
    [CrossRef]
  2. R. Ross and C. Boit, eds., Microelectronic Failure Analysis Desk Reference, 4th ed. (ASM International, Materials Park, Ohio, 1999).
  3. S. Takasu, JEOL News 36E, 60 (2001).
  4. V. Daria, J. Miranda, and C. Saloma, Appl. Opt. 41, 4157 (2002).
    [CrossRef] [PubMed]
  5. J. Miranda and C. Saloma, Appl. Opt. 42, 6520 (2003).
    [CrossRef] [PubMed]
  6. C. Xu and W. Denk, J. Appl. Phys. 86, 2226 (1997).
    [CrossRef]
  7. E. Ramsay, D. Reid, and K. Wilsher, Appl. Phys. Lett. 81, 7 (2002).
    [CrossRef]
  8. R. Juskaitis, N. Rea, and T. Wilson, Appl. Opt. 33, 578 (1994).
    [CrossRef] [PubMed]
  9. P. Rodrigo, M. Lim, and C. Saloma, Opt. Lett. 27, 25 (2002).
    [CrossRef]
  10. P. Rodrigo, M. Lim, and C. Saloma, Appl. Opt. 40, 506 (2001).
    [CrossRef]

2003

2002

2001

1997

C. Xu and W. Denk, J. Appl. Phys. 86, 2226 (1997).
[CrossRef]

1994

Daria, V.

Denk, W.

C. Xu and W. Denk, J. Appl. Phys. 86, 2226 (1997).
[CrossRef]

Juskaitis, R.

Lim, M.

Miranda, J.

Ramsay, E.

E. Ramsay, D. Reid, and K. Wilsher, Appl. Phys. Lett. 81, 7 (2002).
[CrossRef]

Rea, N.

Reid, D.

E. Ramsay, D. Reid, and K. Wilsher, Appl. Phys. Lett. 81, 7 (2002).
[CrossRef]

Rodrigo, P.

Saloma, C.

Takasu, S.

S. Takasu, JEOL News 36E, 60 (2001).

Wagner, L.

L. Wagner, Microelectron. Reliab. 43, 1369 (2003).
[CrossRef]

Wilsher, K.

E. Ramsay, D. Reid, and K. Wilsher, Appl. Phys. Lett. 81, 7 (2002).
[CrossRef]

Wilson, T.

Xu, C.

C. Xu and W. Denk, J. Appl. Phys. 86, 2226 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

E. Ramsay, D. Reid, and K. Wilsher, Appl. Phys. Lett. 81, 7 (2002).
[CrossRef]

J. Appl. Phys.

C. Xu and W. Denk, J. Appl. Phys. 86, 2226 (1997).
[CrossRef]

JEOL News

S. Takasu, JEOL News 36E, 60 (2001).

Microelectron. Reliab.

L. Wagner, Microelectron. Reliab. 43, 1369 (2003).
[CrossRef]

Opt. Lett.

Other

R. Ross and C. Boit, eds., Microelectronic Failure Analysis Desk Reference, 4th ed. (ASM International, Materials Park, Ohio, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical microscope setup with OF detection: PD, photodetector; C, collimating lens; AP, anamorphic prisms; D, diaphragm; O, objective lens; S, tri-axis stage; GND, reference ground; other abbreviations defined in text.

Fig. 2
Fig. 2

Top, SL output power versus I with (Ith51 mA) and without (Ith64 mA) OF from a plane mirror. Bottom, measured and theoretical axial responses (full width at half-maximum: 7 µm).

Fig. 3
Fig. 3

Left, confocal and right, 1P OBIC images of the IC at z=-4,0,4 µm (top to bottom). Image size (sampling interval, 2 µm): 200 µm×200 µm.

Fig. 4
Fig. 4

Exclusive images of left, semiconductor and right, metal sites in an array sample at z=-4,0,4 µm. Images are derived from the corresponding image pair in Fig. 3.

Metrics