Abstract

Photorefractive gratings are recorded in lithium niobate crystals in the presence of externally applied electric fields close to the coercive field. After optical erasure a voltage pulse above the poling threshold is applied, and by these means a photorefractive grating reappears that can be erased optically. The results point to electrical fixing, i.e., ferroelectric domain reversal induced by a space-charge field.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Buse, Appl. Phys. B 64, 273, 391 (1997).
  2. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, Berlin, 2000).
    [CrossRef]
  3. P. Boffi, D. Piccinin, and M. C. Ubaldi, eds., Infrared Holography for Optical Communications (Springer-Verlag, Berlin, 2003).
    [CrossRef]
  4. D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
    [CrossRef]
  5. K. Buse, A. Adibi, and D. Psaltis, Nature 393, 665 (1998).
    [CrossRef]
  6. J. J. Amodei and D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
    [CrossRef]
  7. F. Micheron and G. Bismuth, Appl. Phys. Lett. 23, 71 (1973).
    [CrossRef]
  8. J. Ma, T. Y. Chang, J. H. Hong, and R. R. Neurgaonkar, Opt. Lett. 22, 1116 (1997).
    [CrossRef] [PubMed]
  9. V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
    [CrossRef]
  10. D. H. Jundt, M. M. Fejer, and R. L. Byer, IEEE J. Quantum Electron. 26, 135 (1990).
    [CrossRef]
  11. Y. Qiao, S. Orlov, and D. Psaltis, Opt. Lett. 18, 1004 (1993).
    [CrossRef] [PubMed]
  12. R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, Appl. Phys. Lett. 63, 3399 (1993).
    [CrossRef]
  13. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
    [CrossRef]

1998 (2)

K. Buse, A. Adibi, and D. Psaltis, Nature 393, 665 (1998).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

1997 (2)

1993 (2)

Y. Qiao, S. Orlov, and D. Psaltis, Opt. Lett. 18, 1004 (1993).
[CrossRef] [PubMed]

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, Appl. Phys. Lett. 63, 3399 (1993).
[CrossRef]

1990 (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, IEEE J. Quantum Electron. 26, 135 (1990).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

1974 (1)

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

1973 (1)

F. Micheron and G. Bismuth, Appl. Phys. Lett. 23, 71 (1973).
[CrossRef]

1971 (1)

J. J. Amodei and D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[CrossRef]

Adibi, A.

K. Buse, A. Adibi, and D. Psaltis, Nature 393, 665 (1998).
[CrossRef]

Amodei, J. J.

J. J. Amodei and D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[CrossRef]

Bismuth, G.

F. Micheron and G. Bismuth, Appl. Phys. Lett. 23, 71 (1973).
[CrossRef]

Buse, K.

K. Buse, A. Adibi, and D. Psaltis, Nature 393, 665 (1998).
[CrossRef]

K. Buse, Appl. Phys. B 64, 273, 391 (1997).

Byer, R. L.

D. H. Jundt, M. M. Fejer, and R. L. Byer, IEEE J. Quantum Electron. 26, 135 (1990).
[CrossRef]

Chang, T. Y.

Cudney, R. S.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, Appl. Phys. Lett. 63, 3399 (1993).
[CrossRef]

Fejer, M. M.

D. H. Jundt, M. M. Fejer, and R. L. Byer, IEEE J. Quantum Electron. 26, 135 (1990).
[CrossRef]

Fousek, J.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, Appl. Phys. Lett. 63, 3399 (1993).
[CrossRef]

Furukawa, Y.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

Garrett, M. H.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, Appl. Phys. Lett. 63, 3399 (1993).
[CrossRef]

Glass, A. M.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Gopalan, V.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

Günter, P.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, Appl. Phys. Lett. 63, 3399 (1993).
[CrossRef]

Hong, J. H.

Jundt, D. H.

D. H. Jundt, M. M. Fejer, and R. L. Byer, IEEE J. Quantum Electron. 26, 135 (1990).
[CrossRef]

Kitamura, K.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Ma, J.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Micheron, F.

F. Micheron and G. Bismuth, Appl. Phys. Lett. 23, 71 (1973).
[CrossRef]

Mitchell, T. E.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

Neurgaonkar, R. R.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Orlov, S.

Psaltis, D.

Qiao, Y.

Rodgers, K. F.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Rytz, D.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, Appl. Phys. Lett. 63, 3399 (1993).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Staebler, D. L.

J. J. Amodei and D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

von der Linde, D.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Zgonik, M.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, Appl. Phys. Lett. 63, 3399 (1993).
[CrossRef]

Appl. Phys. B (1)

K. Buse, Appl. Phys. B 64, 273, 391 (1997).

Appl. Phys. Lett. (5)

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

J. J. Amodei and D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[CrossRef]

F. Micheron and G. Bismuth, Appl. Phys. Lett. 23, 71 (1973).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, Appl. Phys. Lett. 63, 3399 (1993).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, IEEE J. Quantum Electron. 26, 135 (1990).
[CrossRef]

Nature (1)

K. Buse, A. Adibi, and D. Psaltis, Nature 393, 665 (1998).
[CrossRef]

Opt. Lett. (2)

Other (2)

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[CrossRef]

P. Boffi, D. Piccinin, and M. C. Ubaldi, eds., Infrared Holography for Optical Communications (Springer-Verlag, Berlin, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diffraction efficiency η, applied bias field Ebias, and current I versus time t in a typical fixing process. The crystal used is 0.5 mm thick, and the coercive field is 2.3 kV/mm. Details are given in the text.

Fig. 2
Fig. 2

Revealed diffraction efficiency ηrev versus electric field Ebias that is applied during recording of a hologram in a 0.5-mm-thick crystal with an iron concentration of 54×1024 m-3. Each hologram was recorded for 300 s. Afterward the crystal was illuminated homogeneously for at least 600 s and then poled backward by application of a negative field of 3 kV/mm. In the gray region the crystal starts to switch domains even without a previously written space-charge grating.

Fig. 3
Fig. 3

Revealed diffraction efficiency ηrev versus recording time t for a 1.3-mm-thick crystal doped with 18×1024m-3 iron. With an applied field of 2.4 kV/mm holograms were recorded for different times, and the field was kept on for another 100 s in the dark. Afterward the holograms were erased and then revealed by application of a negative field of 3 kV/mm.

Metrics