Abstract

We report a novel scheme for a fiber-optic hydrogen sensor based on an erbium-doped fiber laser with a palladium-coated tapered fiber within the laser cavity. The tapered fiber acts as a hydrogen-sensing element. When the sensing element is exposed to a hydrogen atmosphere, its attenuation decreases, changing the cavity losses and leading to a modification of the laser transient. The hydrogen concentration is obtained by simple measurement of the buildup time of the laser. This technique translates the measurement of hydrogen concentration into the time domain, and it can be extended to many intensity-based fiber sensors. Relative variations in the buildup time of up to 55% at an increase of the hydrogen concentration from 0 to 10% are achieved with a resolution of better than 0.1%.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O'Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
    [CrossRef]
  2. M. Gupta, H. Jiao, and A. O'Keefe, Opt. Lett. 27, 1878 (2002).
    [CrossRef]
  3. C. Wang and S. T. Scherer, Opt. Lett. 29, 352 (2004).
    [CrossRef] [PubMed]
  4. C. Christofides and A. Mandelis, J. Appl. Phys. 68, R1 (1990).
    [CrossRef]
  5. S. M. Adler-Golden, N. Goldstein, F. Bien, M. W. Matthew, M. E. Gersh, W. K. Cheng, and F. W. Adams, Appl. Opt. 31, 831 (1992).
    [CrossRef] [PubMed]
  6. P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, Sens. Actuators B 74, 168 (2001).
    [CrossRef]
  7. M. A. Butler and D. S. Ginley, J. Appl. Phys. 64, 3706 (1988).
    [CrossRef]
  8. M. A. Butler, Sens. Actuators B 22, 155 (1994).
    [CrossRef]
  9. J. Hernandez-Cordero and T. F. Morse, IEICE Trans. Electron. 83, 371 (2000).
  10. G. Steward, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2002).
    [CrossRef]
  11. Y. Zhang, M. Zhang, and W. Jin, Sens. Actuators A 104, 183 (2003).
    [CrossRef]
  12. A. E. Siegman, Lasers, 4th ed. (University Science, Mill Valley, Calif., 1986).
  13. I. J. Sola, J. C. Martín, J. M. Álvarez, and S. Jarabo, Opt. Commun. 193, 133 (2001).
    [CrossRef]
  14. J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, Electron. Lett. 37, 1011 (2001).
    [CrossRef]
  15. J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, IEEE Sensors J. 3, 533 (2003).
    [CrossRef]

2004

2003

Y. Zhang, M. Zhang, and W. Jin, Sens. Actuators A 104, 183 (2003).
[CrossRef]

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, IEEE Sensors J. 3, 533 (2003).
[CrossRef]

2002

G. Steward, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2002).
[CrossRef]

M. Gupta, H. Jiao, and A. O'Keefe, Opt. Lett. 27, 1878 (2002).
[CrossRef]

2001

I. J. Sola, J. C. Martín, J. M. Álvarez, and S. Jarabo, Opt. Commun. 193, 133 (2001).
[CrossRef]

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, Electron. Lett. 37, 1011 (2001).
[CrossRef]

P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, Sens. Actuators B 74, 168 (2001).
[CrossRef]

2000

J. Hernandez-Cordero and T. F. Morse, IEICE Trans. Electron. 83, 371 (2000).

1994

M. A. Butler, Sens. Actuators B 22, 155 (1994).
[CrossRef]

1992

1990

C. Christofides and A. Mandelis, J. Appl. Phys. 68, R1 (1990).
[CrossRef]

1988

M. A. Butler and D. S. Ginley, J. Appl. Phys. 64, 3706 (1988).
[CrossRef]

A. O'Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Adams, F. W.

Adler-Golden, S. M.

Álvarez, J. M.

I. J. Sola, J. C. Martín, J. M. Álvarez, and S. Jarabo, Opt. Commun. 193, 133 (2001).
[CrossRef]

Andrés, M. V.

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, IEEE Sensors J. 3, 533 (2003).
[CrossRef]

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, Electron. Lett. 37, 1011 (2001).
[CrossRef]

Atherton, K.

G. Steward, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2002).
[CrossRef]

Bien, F.

Butler, M. A.

M. A. Butler, Sens. Actuators B 22, 155 (1994).
[CrossRef]

M. A. Butler and D. S. Ginley, J. Appl. Phys. 64, 3706 (1988).
[CrossRef]

Cheng, W. K.

Christofides, C.

C. Christofides and A. Mandelis, J. Appl. Phys. 68, R1 (1990).
[CrossRef]

Cruz, J. L.

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, IEEE Sensors J. 3, 533 (2003).
[CrossRef]

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, Electron. Lett. 37, 1011 (2001).
[CrossRef]

Culshaw, B.

G. Steward, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2002).
[CrossRef]

Deacon, D. A. G.

A. O'Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Díez, A.

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, IEEE Sensors J. 3, 533 (2003).
[CrossRef]

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, Electron. Lett. 37, 1011 (2001).
[CrossRef]

Gagnaire, H.

P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, Sens. Actuators B 74, 168 (2001).
[CrossRef]

Gersh, M. E.

Ginley, D. S.

M. A. Butler and D. S. Ginley, J. Appl. Phys. 64, 3706 (1988).
[CrossRef]

Goldstein, N.

Gupta, M.

Hernandez-Cordero, J.

J. Hernandez-Cordero and T. F. Morse, IEICE Trans. Electron. 83, 371 (2000).

Hugon, O.

P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, Sens. Actuators B 74, 168 (2001).
[CrossRef]

Jarabo, S.

I. J. Sola, J. C. Martín, J. M. Álvarez, and S. Jarabo, Opt. Commun. 193, 133 (2001).
[CrossRef]

Jiao, H.

Jin, W.

Y. Zhang, M. Zhang, and W. Jin, Sens. Actuators A 104, 183 (2003).
[CrossRef]

Mandelis, A.

C. Christofides and A. Mandelis, J. Appl. Phys. 68, R1 (1990).
[CrossRef]

Martín, J. C.

I. J. Sola, J. C. Martín, J. M. Álvarez, and S. Jarabo, Opt. Commun. 193, 133 (2001).
[CrossRef]

Matthew, M. W.

Morse, T. F.

J. Hernandez-Cordero and T. F. Morse, IEICE Trans. Electron. 83, 371 (2000).

O'Keefe, A.

M. Gupta, H. Jiao, and A. O'Keefe, Opt. Lett. 27, 1878 (2002).
[CrossRef]

A. O'Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Scherer, S. T.

Siegman, A. E.

A. E. Siegman, Lasers, 4th ed. (University Science, Mill Valley, Calif., 1986).

Sola, I. J.

I. J. Sola, J. C. Martín, J. M. Álvarez, and S. Jarabo, Opt. Commun. 193, 133 (2001).
[CrossRef]

Steward, G.

G. Steward, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2002).
[CrossRef]

Tobiska, P.

P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, Sens. Actuators B 74, 168 (2001).
[CrossRef]

Trouillet, A.

P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, Sens. Actuators B 74, 168 (2001).
[CrossRef]

Villatoro, J.

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, IEEE Sensors J. 3, 533 (2003).
[CrossRef]

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, Electron. Lett. 37, 1011 (2001).
[CrossRef]

Wang, C.

Yu, H.

G. Steward, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2002).
[CrossRef]

Zhang, M.

Y. Zhang, M. Zhang, and W. Jin, Sens. Actuators A 104, 183 (2003).
[CrossRef]

Zhang, Y.

Y. Zhang, M. Zhang, and W. Jin, Sens. Actuators A 104, 183 (2003).
[CrossRef]

Appl. Opt.

Electron. Lett.

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, Electron. Lett. 37, 1011 (2001).
[CrossRef]

IEEE Sensors J.

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, IEEE Sensors J. 3, 533 (2003).
[CrossRef]

IEICE Trans. Electron.

J. Hernandez-Cordero and T. F. Morse, IEICE Trans. Electron. 83, 371 (2000).

J. Appl. Phys.

M. A. Butler and D. S. Ginley, J. Appl. Phys. 64, 3706 (1988).
[CrossRef]

C. Christofides and A. Mandelis, J. Appl. Phys. 68, R1 (1990).
[CrossRef]

Meas. Sci. Technol.

G. Steward, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2002).
[CrossRef]

Opt. Commun.

I. J. Sola, J. C. Martín, J. M. Álvarez, and S. Jarabo, Opt. Commun. 193, 133 (2001).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

A. O'Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Sens. Actuators A

Y. Zhang, M. Zhang, and W. Jin, Sens. Actuators A 104, 183 (2003).
[CrossRef]

Sens. Actuators B

P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, Sens. Actuators B 74, 168 (2001).
[CrossRef]

M. A. Butler, Sens. Actuators B 22, 155 (1994).
[CrossRef]

Other

A. E. Siegman, Lasers, 4th ed. (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental arrangement: FBG, fiber Bragg grating; FRM, Faraday rotator mirror; SE, sensing element; WDM, wavelength-division multiplexer.

Fig. 2
Fig. 2

Position of the first pulse of the laser transient regime for 0%, 4%, and 10% hydrogen concentrations. The bottom trace corresponds to the pump switching on. Inset, example of the whole laser transient regime.

Fig. 3
Fig. 3

Relative difference between buildup time when the sensor is exposed to hydrogen concentrations of 4% and 0% as a function of the bias pump power.

Fig. 4
Fig. 4

Relative buildup time versus hydrogen concentration. Bias pump power and high-level pump power of (i) 8 and 93 mW and (ii) 3 and 84 mW, respectively.

Fig. 5
Fig. 5

Time response of the sensor when exposed to 4% hydrogen concentration for a bias pump power and an upper pump-power level of 8 and 93 mW, respectively.

Metrics