Abstract

We present a theoretical study of temporal compression of a short-wavelength laser pulse predicted in a real, Doppler-broadened, atomic system. The compression is the result of the coherent control peculiarities of electromagnetically induced transparency-propagation dynamics. Numerical results are reported and discussed, showing a temporal compression of 2 orders of magnitude (from 10 ns to 100 ps) of a 106.7-nm laser pulse in argon atoms at room temperature.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, Phys. Today 50(7), 36 (1997).
    [CrossRef]
  2. J. P. Marangos, J. Mod. Opt. 45, 471 (1998).
    [CrossRef]
  3. P. W. Milonni, J. Phys. B 35, R31 (2002).
    [CrossRef]
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
    [CrossRef]
  5. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
    [CrossRef] [PubMed]
  6. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).
    [CrossRef] [PubMed]
  7. R. Buffa, S. Cavalieri, and M. V. Tognetti, Phys. Rev. A 69, 033815 (2004).
    [CrossRef]

2004

R. Buffa, S. Cavalieri, and M. V. Tognetti, Phys. Rev. A 69, 033815 (2004).
[CrossRef]

2002

P. W. Milonni, J. Phys. B 35, R31 (2002).
[CrossRef]

2001

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
[CrossRef] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).
[CrossRef] [PubMed]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

1998

J. P. Marangos, J. Mod. Opt. 45, 471 (1998).
[CrossRef]

1997

S. E. Harris, Phys. Today 50(7), 36 (1997).
[CrossRef]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Buffa, R.

R. Buffa, S. Cavalieri, and M. V. Tognetti, Phys. Rev. A 69, 033815 (2004).
[CrossRef]

Cavalieri, S.

R. Buffa, S. Cavalieri, and M. V. Tognetti, Phys. Rev. A 69, 033815 (2004).
[CrossRef]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

S. E. Harris, Phys. Today 50(7), 36 (1997).
[CrossRef]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).
[CrossRef] [PubMed]

Lukin, M. D.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
[CrossRef] [PubMed]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
[CrossRef] [PubMed]

Marangos, J. P.

J. P. Marangos, J. Mod. Opt. 45, 471 (1998).
[CrossRef]

Milonni, P. W.

P. W. Milonni, J. Phys. B 35, R31 (2002).
[CrossRef]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
[CrossRef] [PubMed]

Tognetti, M. V.

R. Buffa, S. Cavalieri, and M. V. Tognetti, Phys. Rev. A 69, 033815 (2004).
[CrossRef]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
[CrossRef] [PubMed]

J. Mod. Opt.

J. P. Marangos, J. Mod. Opt. 45, 471 (1998).
[CrossRef]

J. Phys. B

P. W. Milonni, J. Phys. B 35, R31 (2002).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).
[CrossRef] [PubMed]

Phys. Rev. A

R. Buffa, S. Cavalieri, and M. V. Tognetti, Phys. Rev. A 69, 033815 (2004).
[CrossRef]

Phys. Rev. Lett.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
[CrossRef] [PubMed]

Phys. Today

S. E. Harris, Phys. Today 50(7), 36 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram indicating the atomic levels of argon used and the mixing processes included in the calculation. τnm is the lifetime of the nm spontaneous emission.

Fig. 2
Fig. 2

Transmission of a 10-ns probe pulse as a function of the NL product for (a) Ec0=5×105 V/m, (b) Ec0=106 V/m, (c) Ec0=2×106 V/m.

Fig. 3
Fig. 3

Temporal evolution of Imρ12v for (a) Ec0=105 V/m and (b) Ec0=3×105 V/m when the temporal profiles of the coupling and probe fields are those reported in (c). In (a) and (b) the analytical solutions given by Eq. (7) (dashed curve) are also reported.

Fig. 4
Fig. 4

Temporal profile of the coupling field (dashed–dotted curve) and of the probe fields at z=0 (dashed curve) and z=L (solid curve). The coupling field is normalized to the initial value Ec0 and the probe field to the maximum value at the cell input. Inset, probe field at z=L compared with the analytical result of Eq. (8) (dotted curve) in an expanded temporal scale.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Epz+1cEpt=-iNωpd120cρ12v,Epz+1cEpt=-iNωcd230cρ23v.
ρ·12=-iΩp-iΩcρ13-iΔp+γ12ρ12,ρ·13=-iΩcρ12-iΔp+Δc+γ13ρ13,ρ·23=0,
ρ12=-id122-+CωSpω,0expiωt-kωzdω,
Cω=γ13+iω+Δp+Δcγ13+iω+Δp+Δcγ12+iω+Δp+Ωc02,
Ep=-+Spω,0expiωt-kωzdω.
kω=ωc-iNωpd12220cCωv.
ρ12=-iΩcddtΩpΩc,
EpL,t=nEp0,n2t-tL,

Metrics