Abstract

An all-fiber, narrowband, tunable polarization controller is proposed and demonstrated. The device is based on coherent acousto-optic mode coupling induced by two orthogonal acoustic waves on a dispersion-compensating fiber. The cooperative coupling between the two polarizations of the core mode and the TE01 cladding mode through the two gratings permits indirect coupling between the two polarizations of the core mode with nearly 100% efficiency, which makes the polarization-controlling function possible. Experimental results verify the operation of the polarization controller with an insertion loss of <1 dB.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  2. A. Yariv, Opt. Lett. 23, 1835 (1998).
    [CrossRef]
  3. K. S. Lee and T. Erdogan, J. Opt. Soc. Am. A 18, 1176 (2001).
    [CrossRef]
  4. P. Z. Dashti, Q. Li, C.-H. Lin, and H. P. Lee, Opt. Lett. 28, 1403 (2003).
    [CrossRef] [PubMed]
  5. Q. Li, X. Liu, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 1551 (2002).
    [CrossRef]
  6. Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
    [CrossRef]
  7. P. Z. Dashti, Q. Lee, and H. P. Lee, in Optical Fiber Communication Conference, Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2004), paper TuJ2.

2003 (1)

2002 (2)

Q. Li, X. Liu, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 1551 (2002).
[CrossRef]

Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
[CrossRef]

2001 (1)

1998 (1)

1997 (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Dashti, P. Z.

P. Z. Dashti, Q. Li, C.-H. Lin, and H. P. Lee, Opt. Lett. 28, 1403 (2003).
[CrossRef] [PubMed]

P. Z. Dashti, Q. Lee, and H. P. Lee, in Optical Fiber Communication Conference, Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2004), paper TuJ2.

Erdogan, T.

Lee, H. P.

P. Z. Dashti, Q. Li, C.-H. Lin, and H. P. Lee, Opt. Lett. 28, 1403 (2003).
[CrossRef] [PubMed]

Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
[CrossRef]

Q. Li, X. Liu, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 1551 (2002).
[CrossRef]

P. Z. Dashti, Q. Lee, and H. P. Lee, in Optical Fiber Communication Conference, Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2004), paper TuJ2.

Lee, K. S.

Lee, Q.

P. Z. Dashti, Q. Lee, and H. P. Lee, in Optical Fiber Communication Conference, Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2004), paper TuJ2.

Li, Q.

P. Z. Dashti, Q. Li, C.-H. Lin, and H. P. Lee, Opt. Lett. 28, 1403 (2003).
[CrossRef] [PubMed]

Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
[CrossRef]

Q. Li, X. Liu, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 1551 (2002).
[CrossRef]

Lin, C.-H.

Liu, X.

Q. Li, X. Liu, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 1551 (2002).
[CrossRef]

Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
[CrossRef]

Lyons, E. R.

Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
[CrossRef]

Peng, J.

Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
[CrossRef]

Yariv, A.

Zhou, B.

Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Q. Li, X. Liu, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 1551 (2002).
[CrossRef]

Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
[CrossRef]

J. Lightwave Technol. (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Other (1)

P. Z. Dashti, Q. Lee, and H. P. Lee, in Optical Fiber Communication Conference, Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2004), paper TuJ2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Simulation results for output polarization while the amplitude and the phase of the two acoustic waves are changed in random order. The input polarization is fixed. (b)–(d) Measured excursion of the SOP of the transmitted core mode displayed on the Poincaré sphere at three combinations of acoustic wave amplitudes that satisfy the condition sL=π. In each case the relative phase between the two acoustic waves is changed from 0 to 2π.

Fig. 2
Fig. 2

(a) Experimental setup for the polarization-controller experiment. PZTs, piezoelectric transducers. (b) Transmission spectra of the 104µm-diameter acousto-optical tunable filter device for different input polarizations. The transmission spectra of a 125µm unetched fiber are shown in the inset.

Tables (1)

Tables Icon

Table 1 Normalized Coupling Coefficient κijk

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Kijk=ω4AEkclx,yΔjx,yEicox,ydxdyAjκijk,
dEicodz=-ij,kκijkAjEkcl,
dEkcldz=-ii,jκijk*AjEico,
dExcodz=-iK1Ekcl,
dEycodz=-iK2Ekcl,
ddzEkcl=-iK1*Exco+K2*Eyco.
Excoz=-iK1/sP sinsz-Q cossz+R,
Eycoz=-iK2/sP sinsz-Q cossz+S,
Ekclz=P cossz+Q sinsz,
s2=K1K1*+K2K2*.
K1*R+K2*S=0.
ExcoEycoout=1sK12-K222K1K2*2K1*K2-K12+K22ExcoEycoin.

Metrics