Abstract

By using a simple optical geometry based on backward light scattering and employing a Sandercock-type tandem Fabry–Perot interferometer, we measure both the linear and the circular polarization dependences of Rayleigh-wing and Brillouin scattering in a sample of liquid-crystal 4-n-pentyl-4-cyanobiphenyl. Observed polarization dependences are consistent with the third-order nonlinear susceptibilities, taking into account the traceless symmetric scattering tensor for Rayleigh-wing scattering and the isotropic scattering tensor for Brillouin scattering.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).
  2. G. Placzek, in Handbuch der Radiologie (Akademische Verlagsgesellschaft, Leipzig, 1934), Vol. 6, P. 2.
  3. S. Saikan, Jpn. J. Appl. Phys. 23, L718 (1984).
    [CrossRef]
  4. M. D. Levenson and S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, Boston, 1988).
  5. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).
  6. D. A. Rockwell, IEEE J. Quantum Electron. QE–24, 1124 (1988).
    [CrossRef]
  7. C. B. Dane, L. E. Zapata, W. A. Newman, M. A. Norton, and L. A. Hackel, IEEE J. Quantum Electron. 30, 1907 (1994).
    [CrossRef]
  8. R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Phys. Rev. Lett. 17, 229 (1966).
    [CrossRef]
  9. R. W. Boyd, Nonlinear Optics (Academic, Boston, 1992). In Table 9.5.2 on p. 395 of this book, for the gain factor “1/6” reads as “1/4.”
  10. J. R. Sandercock, Top. Appl. Phys. 51, 173 (1982).
    [CrossRef]

1994 (1)

C. B. Dane, L. E. Zapata, W. A. Newman, M. A. Norton, and L. A. Hackel, IEEE J. Quantum Electron. 30, 1907 (1994).
[CrossRef]

1988 (1)

D. A. Rockwell, IEEE J. Quantum Electron. QE–24, 1124 (1988).
[CrossRef]

1984 (1)

S. Saikan, Jpn. J. Appl. Phys. 23, L718 (1984).
[CrossRef]

1982 (1)

J. R. Sandercock, Top. Appl. Phys. 51, 173 (1982).
[CrossRef]

1966 (1)

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Phys. Rev. Lett. 17, 229 (1966).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, Boston, 1992). In Table 9.5.2 on p. 395 of this book, for the gain factor “1/6” reads as “1/4.”

Dane, C. B.

C. B. Dane, L. E. Zapata, W. A. Newman, M. A. Norton, and L. A. Hackel, IEEE J. Quantum Electron. 30, 1907 (1994).
[CrossRef]

Hackel, L. A.

C. B. Dane, L. E. Zapata, W. A. Newman, M. A. Norton, and L. A. Hackel, IEEE J. Quantum Electron. 30, 1907 (1994).
[CrossRef]

Hagenlocker, E. E.

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Phys. Rev. Lett. 17, 229 (1966).
[CrossRef]

Kano, S.

M. D. Levenson and S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, Boston, 1988).

Levenson, M. D.

M. D. Levenson and S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, Boston, 1988).

Long, D. A.

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

Minck, R. W.

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Phys. Rev. Lett. 17, 229 (1966).
[CrossRef]

Newman, W. A.

C. B. Dane, L. E. Zapata, W. A. Newman, M. A. Norton, and L. A. Hackel, IEEE J. Quantum Electron. 30, 1907 (1994).
[CrossRef]

Norton, M. A.

C. B. Dane, L. E. Zapata, W. A. Newman, M. A. Norton, and L. A. Hackel, IEEE J. Quantum Electron. 30, 1907 (1994).
[CrossRef]

Placzek, G.

G. Placzek, in Handbuch der Radiologie (Akademische Verlagsgesellschaft, Leipzig, 1934), Vol. 6, P. 2.

Rado, W. G.

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Phys. Rev. Lett. 17, 229 (1966).
[CrossRef]

Rockwell, D. A.

D. A. Rockwell, IEEE J. Quantum Electron. QE–24, 1124 (1988).
[CrossRef]

Saikan, S.

S. Saikan, Jpn. J. Appl. Phys. 23, L718 (1984).
[CrossRef]

Sandercock, J. R.

J. R. Sandercock, Top. Appl. Phys. 51, 173 (1982).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

Zapata, L. E.

C. B. Dane, L. E. Zapata, W. A. Newman, M. A. Norton, and L. A. Hackel, IEEE J. Quantum Electron. 30, 1907 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. A. Rockwell, IEEE J. Quantum Electron. QE–24, 1124 (1988).
[CrossRef]

C. B. Dane, L. E. Zapata, W. A. Newman, M. A. Norton, and L. A. Hackel, IEEE J. Quantum Electron. 30, 1907 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Saikan, Jpn. J. Appl. Phys. 23, L718 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, Phys. Rev. Lett. 17, 229 (1966).
[CrossRef]

Top. Appl. Phys. (1)

J. R. Sandercock, Top. Appl. Phys. 51, 173 (1982).
[CrossRef]

Other (5)

R. W. Boyd, Nonlinear Optics (Academic, Boston, 1992). In Table 9.5.2 on p. 395 of this book, for the gain factor “1/6” reads as “1/4.”

M. D. Levenson and S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, Boston, 1988).

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

G. Placzek, in Handbuch der Radiologie (Akademische Verlagsgesellschaft, Leipzig, 1934), Vol. 6, P. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup for measurement of polarization dependence of backward light scattering. The incident light is vertically polarized and a horizontally polarized part of the scattered light is detected through a Sandercock-type tandem Fabry–Perot interferometer.

Fig. 2
Fig. 2

Polarization dependence of Rayleigh-wing (R) and Brillouin (B) scattering. G denotes a ghost that arises from exceedingly strong Rayleigh-wing scattering. The spectrum corresponds to each combination of wave plates shown in Table 1.

Tables (2)

Tables Icon

Table 1 Combinations of Wave Plates

Tables Icon

Table 2 Polarization Dependences of Rayleigh-Wing and Brillouin Scattering

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

χ1111=χ1122+χ1212+χ1221.
χijkl-ω2,ω2,ω1,-ω1,
χ++++=χ1122+χ1212,
χ++-=χ1122+χ1221,
χ+-+-=χ1212+χ1221.
χ1111=A5Go+2Gs15,
χ1122=A3Gs+5Ga30,
χ++++=A10Go+Gs+5Ga30,
χ++-=AGs5,

Metrics