Abstract

A unique feature of polarization-sensitive Mueller optical coherence tomography is that, by measuring Jones or Mueller matrices, it can reveal the complete polarization properties of biological samples, even in the presence of diattenuation. We map local polarization properties for the first time to our knowledge by using polar decomposition in combination with least-squares fitting to differentiate measured integrated Jones matrices with respect to depth. We also introduce the new concept of dual attenuation coefficients to characterize diattenuation per unit infinitesimal length in tissues. We experimentally verify the algorithm using measurements of a section of porcine tendon and the septum of a rat heart.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography

Shuichi Makita, Yoshiaki Yasuno, Takashi Endo, Masahide Itoh, and Toyohiko Yatagai
Appl. Opt. 45(6) 1142-1147 (2006)

Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging

Shuliang Jiao, Wurong Yu, George Stoica, and Lihong V. Wang
Appl. Opt. 42(25) 5191-5197 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription