Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach–Zehnder configuration

Not Accessible

Your library or personal account may give you access

Abstract

A high-sensitivity surface plasmon resonance (SPR) biosensor based on the Mach–Zehnder interferometer design is presented. The novel feature of the new design is the use of a Wollaston prism through which the phase quantities of the p and s polarizations are interrogated simultaneously. Since SPR affects only the p polarization, the signal due to the s polarization can be used as the reference. Consequently, the differential phase between the two polarizations allows us to eliminate all common-path phase noise while keeping the phase change caused by the SPR effect. Experimental results obtained from glycerin–water mixtures indicate that the sensitivity limit of our scheme is 5.5×10-8 refractive-index units per 0.01° phase change. To our knowledge, this is a significant improvement over previously obtained results when gold was used as the sensor surface. Such an improvement in the sensitivity limit should allow SPR biosensors to become a possible replacement for conventional biosensing techniques based on fluorescence. Monitoring of the bovine serum albumin (BSA) binding reaction with BSA antibodies is also demonstrated.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles

S.-J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee
Opt. Lett. 29(12) 1390-1392 (2004)

Phase-stepping technique for highly sensitive microscopic surface plasmon resonance biosensor

Chonglei Zhang, Rong Wang, Yijia Wang, Siwei Zhu, Changjun Min, and X.-C. Yuan
Appl. Opt. 53(5) 836-840 (2014)

D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry

Ming-Hung Chiu, Shinn-Fwu Wang, and Rong-Seng Chang
Opt. Lett. 30(3) 233-235 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved