Abstract

A three-dimensional (3D) polarimetric image sensing and display technique based on integral imaging is proposed. Three-dimensional polarization distribution of reflected light from a 3D object can be measured as elemental image arrays by a rotating linear polarizer. After the measurement of the polarization of the 3D object, the 3D polarimetric object can be reconstructed optically by displaying the polarization-selected elemental images in spatial light modulators with two quarter-wave plates. Experimental demonstration of 3D polarimetric imaging of a 3D object attached to two orthogonal linear polarizers is presented. To the best of our knowledge, this is the first report on 3D polarimetric sensing imaging and 3D optical reconstruction by integral imaging.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies (Springer-Verlag, Berlin, 2002).
  2. F. Okano, J. Arai, H. Hoshino, and I. Iiyama, Opt. Eng. 38, 1072 (1999).
    [CrossRef]
  3. N. Davies, M. McCormick, and M. Brewin, Opt. Eng. 33, 3624 (1994).
    [CrossRef]
  4. T. Okoshi, Proc. IEEE 68, 548 (1980).
    [CrossRef]
  5. J. S. Jang and B. Javidi, Opt. Lett. 27, 324 (2002).
    [CrossRef]
  6. O. Matoba, E. Tajahuerce, and B. Javidi, Appl. Opt. 40, 3318 (2001).
    [CrossRef]
  7. Z. G. Ye and M. Dong, J. Appl. Phys. 87, 2312 (2000).
    [CrossRef]
  8. J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, J. Appl. Phys. 91, 4474 (2002).
    [CrossRef]
  9. F. Goudail, F. Galland, and Ph. Réfrégier, in Proceedings of IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 153–156.
  10. J. E. Solomon, Appl. Opt. 20, 1537 (1981).
    [CrossRef] [PubMed]
  11. L. B. Wolff, J. Opt. Soc. Am. A 11, 2935 (1994).
    [CrossRef]
  12. T. Setälä, M. Kaivola, and A. T. Friberg, Phys. Rev. Lett. 88, 123902 (2002).
    [CrossRef]
  13. F. A. Sadjadi and C. S. L. Chun, Opt. Lett. 28, 531 (2003).
    [CrossRef] [PubMed]
  14. C. Chun and F. Sadjadi, Proc. SPIE 5426, 274 (2004).
    [CrossRef]
  15. J. Davis, D. McNamara, D. M. Cottrell, and T. Sonhara, Appl. Opt. 39, 1549 (2000).
    [CrossRef]

2004

C. Chun and F. Sadjadi, Proc. SPIE 5426, 274 (2004).
[CrossRef]

2003

2002

J. S. Jang and B. Javidi, Opt. Lett. 27, 324 (2002).
[CrossRef]

J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, J. Appl. Phys. 91, 4474 (2002).
[CrossRef]

T. Setälä, M. Kaivola, and A. T. Friberg, Phys. Rev. Lett. 88, 123902 (2002).
[CrossRef]

2001

2000

1999

F. Okano, J. Arai, H. Hoshino, and I. Iiyama, Opt. Eng. 38, 1072 (1999).
[CrossRef]

1994

N. Davies, M. McCormick, and M. Brewin, Opt. Eng. 33, 3624 (1994).
[CrossRef]

L. B. Wolff, J. Opt. Soc. Am. A 11, 2935 (1994).
[CrossRef]

1981

1980

T. Okoshi, Proc. IEEE 68, 548 (1980).
[CrossRef]

Arai, J.

F. Okano, J. Arai, H. Hoshino, and I. Iiyama, Opt. Eng. 38, 1072 (1999).
[CrossRef]

Brewin, M.

N. Davies, M. McCormick, and M. Brewin, Opt. Eng. 33, 3624 (1994).
[CrossRef]

Chun, C.

C. Chun and F. Sadjadi, Proc. SPIE 5426, 274 (2004).
[CrossRef]

Chun, C. S. L.

Cottrell, D. M.

Davies, N.

N. Davies, M. McCormick, and M. Brewin, Opt. Eng. 33, 3624 (1994).
[CrossRef]

Davis, J.

Dong, M.

Z. G. Ye and M. Dong, J. Appl. Phys. 87, 2312 (2000).
[CrossRef]

Friberg, A. T.

T. Setälä, M. Kaivola, and A. T. Friberg, Phys. Rev. Lett. 88, 123902 (2002).
[CrossRef]

Galland, F.

F. Goudail, F. Galland, and Ph. Réfrégier, in Proceedings of IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 153–156.

Goudail, F.

F. Goudail, F. Galland, and Ph. Réfrégier, in Proceedings of IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 153–156.

Hong, K. S.

J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, J. Appl. Phys. 91, 4474 (2002).
[CrossRef]

Hoshino, H.

F. Okano, J. Arai, H. Hoshino, and I. Iiyama, Opt. Eng. 38, 1072 (1999).
[CrossRef]

Iiyama, I.

F. Okano, J. Arai, H. Hoshino, and I. Iiyama, Opt. Eng. 38, 1072 (1999).
[CrossRef]

Jang, J. S.

Javidi, B.

J. S. Jang and B. Javidi, Opt. Lett. 27, 324 (2002).
[CrossRef]

O. Matoba, E. Tajahuerce, and B. Javidi, Appl. Opt. 40, 3318 (2001).
[CrossRef]

B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies (Springer-Verlag, Berlin, 2002).

Kaivola, M.

T. Setälä, M. Kaivola, and A. T. Friberg, Phys. Rev. Lett. 88, 123902 (2002).
[CrossRef]

Lee, J. K.

J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, J. Appl. Phys. 91, 4474 (2002).
[CrossRef]

Matoba, O.

McCormick, M.

N. Davies, M. McCormick, and M. Brewin, Opt. Eng. 33, 3624 (1994).
[CrossRef]

McNamara, D.

Millan, J.

J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, J. Appl. Phys. 91, 4474 (2002).
[CrossRef]

Okano, F.

F. Okano, J. Arai, H. Hoshino, and I. Iiyama, Opt. Eng. 38, 1072 (1999).
[CrossRef]

B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies (Springer-Verlag, Berlin, 2002).

Okoshi, T.

T. Okoshi, Proc. IEEE 68, 548 (1980).
[CrossRef]

Park, S. E.

J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, J. Appl. Phys. 91, 4474 (2002).
[CrossRef]

Réfrégier, Ph.

F. Goudail, F. Galland, and Ph. Réfrégier, in Proceedings of IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 153–156.

Sadjadi, F.

C. Chun and F. Sadjadi, Proc. SPIE 5426, 274 (2004).
[CrossRef]

Sadjadi, F. A.

Setälä, T.

T. Setälä, M. Kaivola, and A. T. Friberg, Phys. Rev. Lett. 88, 123902 (2002).
[CrossRef]

Solomon, J. E.

Sonhara, T.

Tajahuerce, E.

Wolff, L. B.

Ye, Z. G.

Z. G. Ye and M. Dong, J. Appl. Phys. 87, 2312 (2000).
[CrossRef]

Yun, J.

J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, J. Appl. Phys. 91, 4474 (2002).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

Z. G. Ye and M. Dong, J. Appl. Phys. 87, 2312 (2000).
[CrossRef]

J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, J. Appl. Phys. 91, 4474 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

F. Okano, J. Arai, H. Hoshino, and I. Iiyama, Opt. Eng. 38, 1072 (1999).
[CrossRef]

N. Davies, M. McCormick, and M. Brewin, Opt. Eng. 33, 3624 (1994).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

T. Setälä, M. Kaivola, and A. T. Friberg, Phys. Rev. Lett. 88, 123902 (2002).
[CrossRef]

Proc. IEEE

T. Okoshi, Proc. IEEE 68, 548 (1980).
[CrossRef]

Proc. SPIE

C. Chun and F. Sadjadi, Proc. SPIE 5426, 274 (2004).
[CrossRef]

Other

B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies (Springer-Verlag, Berlin, 2002).

F. Goudail, F. Galland, and Ph. Réfrégier, in Proceedings of IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 153–156.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the proposed 3D polarimetric sensing and display based on integral imaging.

Fig. 2
Fig. 2

Optical system for an arbitrary elliptical polarization state. QWP, quarter-wave plate; LC-SLM, liquid-crystal SLM. The lines in the QWP and LC-SLM denote the principal axes.

Fig. 3
Fig. 3

Three-dimensional object used in the experiments. (a)–(c) Images obtained by changing the polarization direction of the linear polarizer analyzer as shown by the polarization arrows’ direction.

Fig. 4
Fig. 4

Elemental images obtained by changing the polarization direction of the linear analyzer polarizer as shown by the polarization arrows’ direction.

Fig. 5
Fig. 5

Reconstructed 3D object when the polarization direction of the linear analyzer polarizer is vertical: (a) side view from right, (b) center view, (c) side view from left.

Fig. 6
Fig. 6

Reconstructed 3D object when the polarization direction of the linear analyzer polarizer is horizontal: (a) side view from right, (b) center view, (c) side view from left.

Fig. 7
Fig. 7

Reconstructed 3D object when the polarization direction of the linear analyzer polarizer is 45°. (a) side view from right, (b) center view, (c) side view from left.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E=cos θexpiδsin θ,
M=expiδ001i001cos ϕ2isin ϕ2isin ϕ2cos ϕ2×-i00110=expiδcosϕ2-sin ϕ2.

Metrics