Abstract

Recent theoretical work predicts that the quantum-limited noise figure of a χ3-based fiber-optical parametric amplifier operating as a phase-insensitive in-line amplifier or as a wavelength converter exceeds the standard 3-dB limit at high gain. The degradation of the noise figure is caused by the excess noise added by the unavoidable Raman gain and loss occurring at the signal and the converted wavelengths. We present detailed experimental evidence in support of this theory through measurements of the gain and noise-figure spectra for phase-insensitive parametric amplification and wavelength conversion in a continuous-wave amplifier made from 4.4 km of dispersion-shifted fiber. The theory is also extended to include the effect of distributed linear loss on the noise figure of such a long-length parametric amplifier and wavelength converter.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Y. Wong, K. Shimizu, M. E. Marhic, K. Uesaka, G. Kalogerakis, and L. G. Kazovsky, Opt. Lett. 28, 692 (2003).
    [Crossref] [PubMed]
  2. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
    [Crossref]
  3. L. Wang, A. Agarwal, Y. Su, and P. Kumar, IEEE J. Quantum Electron. 38, 614 (2002).
    [Crossref]
  4. Y. Su, L. Wang, A. Agarwal, and P. Kumar, Electron. Lett. 36, 1103 (2000).
    [Crossref]
  5. R. Tang, J. Lasri, P. Devgan, J. E. Sharping, and P. Kumar, Electron. Lett. 39, 195 (2003).
    [Crossref]
  6. S. Radic, C. J. McKinstrie, R. M. Jopson, J. Centanni, Q. Lin, and G. Agrawal, Electron. Lett. 39, 838 (2003).
    [Crossref]
  7. J. L. Blows and S. E. French, Opt. Lett. 27, 491 (2002).
    [Crossref]
  8. K. Inoue and T. Mukai, IEEE J. Lightwave Technol. 20, 969 (2002).
    [Crossref]
  9. P. L. Voss, R. Y. Tang, and P. Kumar, Opt. Lett. 28, 549 (2003).
    [Crossref] [PubMed]
  10. P. L. Voss and P. Kumar, Opt. Lett. 29, 445 (2004).
    [Crossref] [PubMed]
  11. P. L. Voss and P. Kumar, J. Opt. B 6, S762 (2004).
    [Crossref]
  12. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, J. Opt. Soc. Am. B 6, 1159 (1989).
    [Crossref]
  13. N. R. Newbury, Opt. Lett. 27, 1232 (2002).
    [Crossref]
  14. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, Opt. Lett. 21, 1966 (1996).
    [Crossref] [PubMed]

2004 (2)

2003 (4)

P. L. Voss, R. Y. Tang, and P. Kumar, Opt. Lett. 28, 549 (2003).
[Crossref] [PubMed]

K. K. Y. Wong, K. Shimizu, M. E. Marhic, K. Uesaka, G. Kalogerakis, and L. G. Kazovsky, Opt. Lett. 28, 692 (2003).
[Crossref] [PubMed]

R. Tang, J. Lasri, P. Devgan, J. E. Sharping, and P. Kumar, Electron. Lett. 39, 195 (2003).
[Crossref]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. Centanni, Q. Lin, and G. Agrawal, Electron. Lett. 39, 838 (2003).
[Crossref]

2002 (5)

J. L. Blows and S. E. French, Opt. Lett. 27, 491 (2002).
[Crossref]

K. Inoue and T. Mukai, IEEE J. Lightwave Technol. 20, 969 (2002).
[Crossref]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[Crossref]

L. Wang, A. Agarwal, Y. Su, and P. Kumar, IEEE J. Quantum Electron. 38, 614 (2002).
[Crossref]

N. R. Newbury, Opt. Lett. 27, 1232 (2002).
[Crossref]

2000 (1)

Y. Su, L. Wang, A. Agarwal, and P. Kumar, Electron. Lett. 36, 1103 (2000).
[Crossref]

1996 (1)

1989 (1)

Agarwal, A.

L. Wang, A. Agarwal, Y. Su, and P. Kumar, IEEE J. Quantum Electron. 38, 614 (2002).
[Crossref]

Y. Su, L. Wang, A. Agarwal, and P. Kumar, Electron. Lett. 36, 1103 (2000).
[Crossref]

Agrawal, G.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. Centanni, Q. Lin, and G. Agrawal, Electron. Lett. 39, 838 (2003).
[Crossref]

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[Crossref]

Blows, J. L.

Boskovic, A.

Centanni, J.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. Centanni, Q. Lin, and G. Agrawal, Electron. Lett. 39, 838 (2003).
[Crossref]

Chernikov, S. V.

Devgan, P.

R. Tang, J. Lasri, P. Devgan, J. E. Sharping, and P. Kumar, Electron. Lett. 39, 195 (2003).
[Crossref]

French, S. E.

Gordon, J. P.

Gruner-Nielsen, L.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[Crossref]

Haus, H. A.

Hedekvist, P.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[Crossref]

Inoue, K.

K. Inoue and T. Mukai, IEEE J. Lightwave Technol. 20, 969 (2002).
[Crossref]

Jopson, R. M.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. Centanni, Q. Lin, and G. Agrawal, Electron. Lett. 39, 838 (2003).
[Crossref]

Kalogerakis, G.

Kazovsky, L. G.

Kumar, P.

P. L. Voss and P. Kumar, J. Opt. B 6, S762 (2004).
[Crossref]

P. L. Voss and P. Kumar, Opt. Lett. 29, 445 (2004).
[Crossref] [PubMed]

P. L. Voss, R. Y. Tang, and P. Kumar, Opt. Lett. 28, 549 (2003).
[Crossref] [PubMed]

R. Tang, J. Lasri, P. Devgan, J. E. Sharping, and P. Kumar, Electron. Lett. 39, 195 (2003).
[Crossref]

L. Wang, A. Agarwal, Y. Su, and P. Kumar, IEEE J. Quantum Electron. 38, 614 (2002).
[Crossref]

Y. Su, L. Wang, A. Agarwal, and P. Kumar, Electron. Lett. 36, 1103 (2000).
[Crossref]

Lasri, J.

R. Tang, J. Lasri, P. Devgan, J. E. Sharping, and P. Kumar, Electron. Lett. 39, 195 (2003).
[Crossref]

Levring, O. A.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[Crossref]

Lin, Q.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. Centanni, Q. Lin, and G. Agrawal, Electron. Lett. 39, 838 (2003).
[Crossref]

Marhic, M. E.

McKinstrie, C. J.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. Centanni, Q. Lin, and G. Agrawal, Electron. Lett. 39, 838 (2003).
[Crossref]

Mukai, T.

K. Inoue and T. Mukai, IEEE J. Lightwave Technol. 20, 969 (2002).
[Crossref]

Newbury, N. R.

Radic, S.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. Centanni, Q. Lin, and G. Agrawal, Electron. Lett. 39, 838 (2003).
[Crossref]

Sharping, J. E.

R. Tang, J. Lasri, P. Devgan, J. E. Sharping, and P. Kumar, Electron. Lett. 39, 195 (2003).
[Crossref]

Shimizu, K.

Stolen, R. H.

Su, Y.

L. Wang, A. Agarwal, Y. Su, and P. Kumar, IEEE J. Quantum Electron. 38, 614 (2002).
[Crossref]

Y. Su, L. Wang, A. Agarwal, and P. Kumar, Electron. Lett. 36, 1103 (2000).
[Crossref]

Tang, R.

R. Tang, J. Lasri, P. Devgan, J. E. Sharping, and P. Kumar, Electron. Lett. 39, 195 (2003).
[Crossref]

Tang, R. Y.

Taylor, J. R.

Tomlinson, W. J.

Uesaka, K.

Voss, P. L.

Wang, L.

L. Wang, A. Agarwal, Y. Su, and P. Kumar, IEEE J. Quantum Electron. 38, 614 (2002).
[Crossref]

Y. Su, L. Wang, A. Agarwal, and P. Kumar, Electron. Lett. 36, 1103 (2000).
[Crossref]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[Crossref]

Wong, K. K. Y.

Electron. Lett. (3)

Y. Su, L. Wang, A. Agarwal, and P. Kumar, Electron. Lett. 36, 1103 (2000).
[Crossref]

R. Tang, J. Lasri, P. Devgan, J. E. Sharping, and P. Kumar, Electron. Lett. 39, 195 (2003).
[Crossref]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. Centanni, Q. Lin, and G. Agrawal, Electron. Lett. 39, 838 (2003).
[Crossref]

IEEE J. Lightwave Technol. (1)

K. Inoue and T. Mukai, IEEE J. Lightwave Technol. 20, 969 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Wang, A. Agarwal, Y. Su, and P. Kumar, IEEE J. Quantum Electron. 38, 614 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
[Crossref]

J. Opt. B (1)

P. L. Voss and P. Kumar, J. Opt. B 6, S762 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (6)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup. PM, phase modulator; OBPF, optical bandpass filter; FPC1–FPC3, fiber polarization controllers. (b) Parametric fluorescence spectra with a fiber polarizer placed before the spectrum analyzer (solid curve) and compensated for its 0.9-dB insertion loss and without fiber polarizer (dashed curve).

Fig. 2
Fig. 2

(a) Signal gain spectrum of the FOPA. (b) Wavelength conversion gain spectrum of the FOPA. Solid curve, theory with inclusion of the Raman effect and linear loss; circles, experimental data.

Fig. 3
Fig. 3

(a) Noise figure of the FOPA. (b) Noise figure of the WC. Dashed curve, theory without the Raman effect or distributed loss; dashed–dotted curve, theory with the Raman effect but neglecting distributed loss; solid curve, theory with the Raman effect and distributed linear loss; circles, experimental data. The size of the circles is of the order of the measurement error. Measurements near the pump wavelength are contaminated by excessive ASE leakage through the OBPF.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

NFj,PIA=1+νj2+1+2nthcj,R2+cj,v2μj2,
μa=expfLn=0anLeffn    a0=1,s0*=0,
μs=expfLn=0snLeffn    a0=0,s0*=1,
an=Γan-1+ξ1sn-1*+Λj=0n-1αpjan-1-jn,sn*=-Γsn-1*+ξ2an-1-Λj=0n-1αpjsn-1-j*n,
cj,R2=0L2 ImHΩIp0exp-αpz×μjL-z-νjL-z2dz,cas,v2=0LαasμasL-z2+αsaνasL-z2dz.
NFj,WC=1+μj2+1+2nthcj,R2+cj,v2νj2
NF=1G+2PPFωBoG,

Metrics