Abstract

We demonstrate that UV exposure of highly nonlinear, germanosilicate fibers causes a strong change in their chromatic dispersion and can significantly alter the infrared supercontinuum generation in these fibers. By varying the level of UV exposure to the fiber, we show that the dispersion zero and the short-wavelength edge of the supercontinuum can be changed by more than 100 nm. A nonlinear Schrödinger equation model of the continuum generation in the nonlinear fiber shows that the short-wavelength behavior of the continuum is primarily controlled by changes in the fiber dispersion caused by the UV-induced change in the refractive index of the fiber core.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription