Abstract

We have demonstrated wideband frequency modulation of the frequency comb lines of a high-repetition-rate fiber laser. With a modulation frequency of only ∼10 kHz, we have generated modulation indices in excess of 250. Although internally modulated, the laser remains stable with 2-kHz linewidths, and thus the 10-kHz modulation sidebands are still clearly resolved even after propagation over several hundred kilometers. This unique characteristic is used for simultaneous measurement of propagation distances to 1-m resolution and velocities of less than 3 mm/s over a distance of greater than 50 km.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Udem, R. Holzwarth, and T. W. Hansch, Nature 416, 233 (2002), and references therein.
    [CrossRef] [PubMed]
  2. S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1072 (2003).
    [CrossRef]
  3. F. K. Fatemi, J. W. Lou, and T. F. Carruthers, Opt. Lett. 29, 944 (2004).
    [CrossRef] [PubMed]
  4. B. Cai and A. J. Seeds, IEEE Trans. Microwave Theory Tech. 45, 505 (1997).
    [CrossRef]
  5. P. Oberson, B. Huttner, and N. Gisin, Opt. Lett. 24, 451 (1999).
    [CrossRef]
  6. J. W. Lou, T. F. Carruthers, and M. Currie, IEEE Photon. Technol. Lett. 16, 51 (2004), and references therein.
    [CrossRef]
  7. R. Xu, B. Schmitz, and M. Lynch, Rev. Sci. Instrum. 68, 1953 (1997).
  8. N. Park, J. W. Dawson, and K. J. Vahala, Opt. Lett. 17, 1274 (1992).
    [CrossRef] [PubMed]
  9. M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, Opt. Eng. 40, 11 (2001).
  10. P. de Groot, Opt. Eng. 40, 28 (2001).
    [CrossRef]

2004 (2)

J. W. Lou, T. F. Carruthers, and M. Currie, IEEE Photon. Technol. Lett. 16, 51 (2004), and references therein.
[CrossRef]

F. K. Fatemi, J. W. Lou, and T. F. Carruthers, Opt. Lett. 29, 944 (2004).
[CrossRef] [PubMed]

2003 (1)

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1072 (2003).
[CrossRef]

2002 (1)

Th. Udem, R. Holzwarth, and T. W. Hansch, Nature 416, 233 (2002), and references therein.
[CrossRef] [PubMed]

2001 (2)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, Opt. Eng. 40, 11 (2001).

P. de Groot, Opt. Eng. 40, 28 (2001).
[CrossRef]

1999 (1)

1997 (2)

B. Cai and A. J. Seeds, IEEE Trans. Microwave Theory Tech. 45, 505 (1997).
[CrossRef]

R. Xu, B. Schmitz, and M. Lynch, Rev. Sci. Instrum. 68, 1953 (1997).

1992 (1)

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, Opt. Eng. 40, 11 (2001).

Bartels, A.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1072 (2003).
[CrossRef]

Bergquist, J. C.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1072 (2003).
[CrossRef]

Bize, S.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1072 (2003).
[CrossRef]

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, Opt. Eng. 40, 11 (2001).

Cai, B.

B. Cai and A. J. Seeds, IEEE Trans. Microwave Theory Tech. 45, 505 (1997).
[CrossRef]

Carruthers, T. F.

J. W. Lou, T. F. Carruthers, and M. Currie, IEEE Photon. Technol. Lett. 16, 51 (2004), and references therein.
[CrossRef]

F. K. Fatemi, J. W. Lou, and T. F. Carruthers, Opt. Lett. 29, 944 (2004).
[CrossRef] [PubMed]

Currie, M.

J. W. Lou, T. F. Carruthers, and M. Currie, IEEE Photon. Technol. Lett. 16, 51 (2004), and references therein.
[CrossRef]

Curtis, E. A.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1072 (2003).
[CrossRef]

Dawson, J. W.

de Groot, P.

P. de Groot, Opt. Eng. 40, 28 (2001).
[CrossRef]

Diddams, S. A.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1072 (2003).
[CrossRef]

Fatemi, F. K.

Gisin, N.

Hansch, T. W.

Th. Udem, R. Holzwarth, and T. W. Hansch, Nature 416, 233 (2002), and references therein.
[CrossRef] [PubMed]

Hollberg, L.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1072 (2003).
[CrossRef]

Holzwarth, R.

Th. Udem, R. Holzwarth, and T. W. Hansch, Nature 416, 233 (2002), and references therein.
[CrossRef] [PubMed]

Huttner, B.

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, Opt. Eng. 40, 11 (2001).

Lou, J. W.

F. K. Fatemi, J. W. Lou, and T. F. Carruthers, Opt. Lett. 29, 944 (2004).
[CrossRef] [PubMed]

J. W. Lou, T. F. Carruthers, and M. Currie, IEEE Photon. Technol. Lett. 16, 51 (2004), and references therein.
[CrossRef]

Lynch, M.

R. Xu, B. Schmitz, and M. Lynch, Rev. Sci. Instrum. 68, 1953 (1997).

Myllyla, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, Opt. Eng. 40, 11 (2001).

Oates, C. W.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1072 (2003).
[CrossRef]

Oberson, P.

Park, N.

Ramond, T. M.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1072 (2003).
[CrossRef]

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, Opt. Eng. 40, 11 (2001).

Schmitz, B.

R. Xu, B. Schmitz, and M. Lynch, Rev. Sci. Instrum. 68, 1953 (1997).

Seeds, A. J.

B. Cai and A. J. Seeds, IEEE Trans. Microwave Theory Tech. 45, 505 (1997).
[CrossRef]

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hansch, Nature 416, 233 (2002), and references therein.
[CrossRef] [PubMed]

Vahala, K. J.

Xu, R.

R. Xu, B. Schmitz, and M. Lynch, Rev. Sci. Instrum. 68, 1953 (1997).

IEEE J. Sel. Top. Quantum Electron. (1)

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1072 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. W. Lou, T. F. Carruthers, and M. Currie, IEEE Photon. Technol. Lett. 16, 51 (2004), and references therein.
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

B. Cai and A. J. Seeds, IEEE Trans. Microwave Theory Tech. 45, 505 (1997).
[CrossRef]

Nature (1)

Th. Udem, R. Holzwarth, and T. W. Hansch, Nature 416, 233 (2002), and references therein.
[CrossRef] [PubMed]

Opt. Eng. (2)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, Opt. Eng. 40, 11 (2001).

P. de Groot, Opt. Eng. 40, 28 (2001).
[CrossRef]

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

R. Xu, B. Schmitz, and M. Lynch, Rev. Sci. Instrum. 68, 1953 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Typical optical spectrum showing frequency comb lines separated by the 10-GHz repetition rate. (b) Experimental setup: The pulse train is split and recombined in a 90:10 coupler. The total loop propagation delay, T, consists of an acousto-optic modulator (AOM) at 55 MHz, an Er-doped fiber amplifier (EDFA), and a polarization controller (PC). The recombined output is detected by a fast photodetector (PD) and analyzed on a spectrum analyzer. For Doppler measurements the loop contains a free-space variable delay.

Fig. 2
Fig. 2

WBFM spectrum created by modulating with fm=18.860 kHz. (a) Resolution bandwidth 10 kHz, (b) resolution bandwidth 1 kHz.

Fig. 3
Fig. 3

Extracted modulation index βeff as a function of round-trip number. The data are fitted to 2βmaxsinnωmT/2, where n is the round-trip number and T is the propagation delay per round trip.

Fig. 4
Fig. 4

WBFM spectra with (filled circles) and without (open circles) a 10.5-m patch cord in the delay loop. The fits (solid curves) give βeff=4.41±0.05 and βeff=2.50±0.03 with and without the patch cord, respectively.

Fig. 5
Fig. 5

WBFM spectrum taken with a stationary target and a target moving at 3.0 mm/s from a propagation distance of 50 km in fiber. Each of the ∼35 lines in the WBFM spectrum is shifted.

Metrics