Abstract

A new concept for the measurement of chromatic dispersion is presented. The group delay of the device under test is directly obtained from the instantaneous frequency of a short optical pulse after propagation in the device, itself obtained with temporal and spectral interferometry. Temporal and spectral fringe encoding provide excellent accuracy and resistance to noise, and a wide variety of dispersions can be characterized even at high insertion losses.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
    [CrossRef]
  2. P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
    [CrossRef]
  3. D. Derickson, ed., Fiber Optic Test and Measurement (Prentice-Hall, Englewood Cliffs, N.J., 1998).
  4. K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, IEEE Photon. Technol. Lett. 15, 873 (2003).
    [CrossRef]
  5. L. G. Cohen, J. Lightwave Technol. LT-3, 958 (1985).
    [CrossRef]
  6. R. M. Fortenberry and W. V. Sorin, “Apparatus for characterizing short optical pulses,” U.S. patent5,684,586 (November4, 1997).
  7. L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  8. A. Weling and D. H. Auston, J. Opt. Soc. Am. B 13, 2783 (1996).
    [CrossRef]
  9. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  10. C. Dorrer and I. Kang, Opt. Lett. 28, 477 (2003).
    [CrossRef] [PubMed]
  11. V. Messager, F. Louradour, C. Froehly, and A. Barthelemy, Opt. Lett. 28, 743 (2003).
    [CrossRef] [PubMed]

2003

2001

I. A. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
[CrossRef]

1998

1996

1995

1989

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

1985

L. G. Cohen, J. Lightwave Technol. LT-3, 958 (1985).
[CrossRef]

Auston, D. H.

Barthelemy, A.

Chériaux, G.

Chung, Y. C.

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, IEEE Photon. Technol. Lett. 15, 873 (2003).
[CrossRef]

Cohen, L. G.

L. G. Cohen, J. Lightwave Technol. LT-3, 958 (1985).
[CrossRef]

Dorrer, C.

C. Dorrer and I. Kang, Opt. Lett. 28, 477 (2003).
[CrossRef] [PubMed]

I. A. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
[CrossRef]

Fortenberry, R. M.

R. M. Fortenberry and W. V. Sorin, “Apparatus for characterizing short optical pulses,” U.S. patent5,684,586 (November4, 1997).

Froehly, C.

Iaconis, C.

Jackson, D. A.

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Joffre, M.

Kang, I.

Lee, J. H.

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, IEEE Photon. Technol. Lett. 15, 873 (2003).
[CrossRef]

Lepetit, L.

Louradour, F.

Merritt, P.

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Messager, V.

Park, K. J.

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, IEEE Photon. Technol. Lett. 15, 873 (2003).
[CrossRef]

Sorin, W. V.

R. M. Fortenberry and W. V. Sorin, “Apparatus for characterizing short optical pulses,” U.S. patent5,684,586 (November4, 1997).

Tatam, R. P.

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Walmsley, I. A.

I. A. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
[CrossRef]

C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
[CrossRef]

Waxer, L.

I. A. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
[CrossRef]

Weling, A.

Youn, C. J.

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, IEEE Photon. Technol. Lett. 15, 873 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, IEEE Photon. Technol. Lett. 15, 873 (2003).
[CrossRef]

J. Lightwave Technol.

L. G. Cohen, J. Lightwave Technol. LT-3, 958 (1985).
[CrossRef]

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Rev. Sci. Instrum.

I. A. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
[CrossRef]

Other

D. Derickson, ed., Fiber Optic Test and Measurement (Prentice-Hall, Englewood Cliffs, N.J., 1998).

R. M. Fortenberry and W. V. Sorin, “Apparatus for characterizing short optical pulses,” U.S. patent5,684,586 (November4, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of DIFM.

Fig. 2
Fig. 2

Temporal (top left) and spectral (top right) interferograms and close-ups (bottom) of the fringes.

Fig. 3
Fig. 3

Group delay of an 80-km SSMF span measured by DIFM (continuous curve), RF modulation (filled circles), and the difference between the two measurements (open circles).

Fig. 4
Fig. 4

Group delay measured on 40-, 30-, 20-, and 10-km SSMF spans, a short DCF, a long DCF, and concatenated short and long DCFs (left, top to bottom) and the group delay of a 1-km low-dispersion fiber measured by differential measurement with each of the previous spans (right).

Fig. 5
Fig. 5

Dispersion (squares) and dispersion slope (circles) of two concatenated DCFs as a function of the insertion losses, measured without amplification for insertion losses below 30 dB (filled squares and circles) and with an EDFA before detection for insertion losses from 30 to 50 dB (open squares and circles).

Metrics