Abstract

We have developed a deformable, gold-coated mirror based on piezoelectric actuators with 15µs response time. With 20 independent channels we were able to compress 72-fs pulses from a Ti:sapphire oscillator down to 45 fs in a 4f zero-dispersion compressor arrangement. Spectral interference was used to measure the mirror performance, while the spectral phase interferometry for direct electric field reconstruction (SPIDER) technique was used for the laser pulse characterization.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Dugan, J. X. Tull, and W. S. Warren, J. Opt. Soc. Am. B 14, 2348 (1997).
    [CrossRef]
  2. A. Efimov and D. H. Reitze, Opt. Lett. 23, 1612 (1998).
    [CrossRef]
  3. T. Brixner, M. Strehle, and G. Gerber, Appl. Phys. B 68, 281 (1999).
    [CrossRef]
  4. W. S. Warren, R. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
    [CrossRef] [PubMed]
  5. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, Opt. Lett. 15, 326 (1990).
    [CrossRef]
  6. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
    [CrossRef]
  7. G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, Appl. Phys. B 72, 627 (2001).
    [CrossRef]
  8. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, Opt. Lett. 24, 493 (1999).
    [CrossRef]
  9. G. Vdovin and P. M. Sarro, Appl. Opt. 34, 2968 (1995).
    [CrossRef] [PubMed]
  10. G. Vdovin and M. Loktev, Opt. Lett. 27, 677 (2002).
    [CrossRef]
  11. J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, Appl. Opt. 37, 4663 (1998).
    [CrossRef]
  12. Piezo Systems, Inc., 186 Massachusetts Avenue, Cambridge, Mass. 02139, www.piezo.com .
  13. C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
    [CrossRef]

2002 (1)

2001 (1)

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, Appl. Phys. B 72, 627 (2001).
[CrossRef]

1999 (3)

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, Opt. Lett. 24, 493 (1999).
[CrossRef]

T. Brixner, M. Strehle, and G. Gerber, Appl. Phys. B 68, 281 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

1998 (2)

1997 (1)

1995 (1)

1993 (1)

W. S. Warren, R. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

1992 (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

1990 (1)

Backus, S.

Brixner, T.

T. Brixner, M. Strehle, and G. Gerber, Appl. Phys. B 68, 281 (1999).
[CrossRef]

Dahleh, M.

W. S. Warren, R. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

Dainty, J. C.

Dugan, M. A.

Efimov, A.

Feurer, T.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, Appl. Phys. B 72, 627 (2001).
[CrossRef]

Gerber, G.

T. Brixner, M. Strehle, and G. Gerber, Appl. Phys. B 68, 281 (1999).
[CrossRef]

Hacker, M.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, Appl. Phys. B 72, 627 (2001).
[CrossRef]

Iaconis, C.

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

Kapteyn, H.

Koryabin, A. V.

Kudryashov, A. V.

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, Opt. Lett. 15, 326 (1990).
[CrossRef]

Loktev, M.

Maginnis, K.

Motzkus, M.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, Appl. Phys. B 72, 627 (2001).
[CrossRef]

Mourou, G.

Murnane, M.

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, Opt. Lett. 15, 326 (1990).
[CrossRef]

Rabitz, R.

W. S. Warren, R. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

Reichel, F.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, Appl. Phys. B 72, 627 (2001).
[CrossRef]

Reitze, D. H.

Russek, U.

Sarro, P. M.

Stobrawa, G.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, Appl. Phys. B 72, 627 (2001).
[CrossRef]

Strehle, M.

T. Brixner, M. Strehle, and G. Gerber, Appl. Phys. B 68, 281 (1999).
[CrossRef]

Tull, J. X.

Vdovin, G.

Walmsley, I. A.

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

Warren, W. S.

Weiner, A. M.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, Opt. Lett. 15, 326 (1990).
[CrossRef]

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, Opt. Lett. 15, 326 (1990).
[CrossRef]

Zeek, E.

Zeidler, D.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, Appl. Phys. B 72, 627 (2001).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

T. Brixner, M. Strehle, and G. Gerber, Appl. Phys. B 68, 281 (1999).
[CrossRef]

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, Appl. Phys. B 72, 627 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Science (1)

W. S. Warren, R. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

Other (1)

Piezo Systems, Inc., 186 Massachusetts Avenue, Cambridge, Mass. 02139, www.piezo.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of the PADRE. The device consists of a block of glass upon which 20 stacks of piezo elements are mounted in a row. Each stack consists of 12 layers. A 0.5-mm-thick plate of gold-coated glass is attached onto the top.

Fig. 2
Fig. 2

Compressor setup. The incoming beam of femtosecond pulses is diffracted by a 600-groove/mm grating G (the point of incidence coincides with the focal plane of the concave mirror), then each spectral component is focused with a 50-cm focal-length concave mirror M on the PADRE (P) surface placed in the mirror focal plane. Retardation of each frequency depends on the local deformation of the PADRE.

Fig. 3
Fig. 3

Single actuator response function—measured spectral phase difference ϕω introduced by a single actuator. The FWHM width is 16 nm, corresponding to a 1.8 actuator period. The positions of the actuators’ centers are marked on the top axis.

Fig. 4
Fig. 4

Measured pulse spectrum (curve) and spectral phase (open circles) of the stretched pulse from a femtosecond oscillator and spectral phase after compression (filled triangles). Kinks in the retrieved phase of the compressed pulse come from SPIDER errors in the regions of low spectral intensity.

Fig. 5
Fig. 5

Measured temporal profile of the pulses before (thick curve) and after (dotted curve with squares) compression.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Eoutω=Einωexpiϕω,
Iω=I0ω1+cosω0τ+ϕω,

Metrics