Abstract

We present a new optical assembly with which to achieve Lau fringes with totally incoherent illumination. Gratinglike codification of the spatially incoherent source combined with an achromatic Fresnel diffraction setup allows us to achieve Lau fringe-pattern visibility of almost 100% with broadband light. The white-light character to our proposed setup is in stark contrast to previous monochromatic implementations. Potential implications of this fact are identified.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Lau, Ann. Phys. 6, 417 (1948).
    [CrossRef]
  2. K. Patorski, in Progress in Optics, E. Wolf, ed. (Pergamon, London, 1989), Vol. XXVII, p. 3.
  3. M. Thakur, A. L. Vyas, and C. Shakher, Appl. Opt. 41, 654 (2002).
    [CrossRef] [PubMed]
  4. M. Thakur and C. Shakher, Appl. Opt. 41, 1841 (2002).
    [CrossRef] [PubMed]
  5. C. S. Avudainayagam, K. V. Avudainayagam, and D. A. Atchison, Opt. Lett. 27, 476 (2002).
    [CrossRef]
  6. B. Dubetsky and P. R. Berman, in Atom Interferometry, P. R. Berman, ed. (Academic, San Diego, Calif., 1997), pp. 407–468.
    [CrossRef]
  7. B. Brezger, L. Hackermuller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, Phys. Rev. Lett. 88, 100404 (2002).
    [CrossRef]
  8. S. Nowak, N. Stuhler, T. Pfau, and J. Mlynek, Phys. Rev. Lett. 81, 5792 (1998).
    [CrossRef]
  9. B. J. Chang, R. Alferness, and E. N. Leith, Appl. Opt. 14, 1592 (1975).
    [CrossRef] [PubMed]
  10. Y. Cheng, Appl. Opt. 23, 3057 (1984).
    [CrossRef]
  11. J. Lancis, G. Mínguez-Vega, E. Tajahuerce, M. Fernández-Alonso, V. Climent, and P. Andrés, Opt. Lett. 27, 942 (2002).
    [CrossRef]
  12. C. Palma and V. Bagini, J. Opt. Soc. Am. A 14, 1774 (1997).
    [CrossRef]

2002 (5)

1998 (1)

S. Nowak, N. Stuhler, T. Pfau, and J. Mlynek, Phys. Rev. Lett. 81, 5792 (1998).
[CrossRef]

1997 (1)

1984 (1)

1975 (1)

1948 (1)

E. Lau, Ann. Phys. 6, 417 (1948).
[CrossRef]

Alferness, R.

Andrés, P.

Arndt, M.

B. Brezger, L. Hackermuller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, Phys. Rev. Lett. 88, 100404 (2002).
[CrossRef]

Atchison, D. A.

Avudainayagam, C. S.

Avudainayagam, K. V.

Bagini, V.

Berman, P. R.

B. Dubetsky and P. R. Berman, in Atom Interferometry, P. R. Berman, ed. (Academic, San Diego, Calif., 1997), pp. 407–468.
[CrossRef]

Brezger, B.

B. Brezger, L. Hackermuller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, Phys. Rev. Lett. 88, 100404 (2002).
[CrossRef]

Chang, B. J.

Cheng, Y.

Climent, V.

Dubetsky, B.

B. Dubetsky and P. R. Berman, in Atom Interferometry, P. R. Berman, ed. (Academic, San Diego, Calif., 1997), pp. 407–468.
[CrossRef]

Fernández-Alonso, M.

Hackermuller, L.

B. Brezger, L. Hackermuller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, Phys. Rev. Lett. 88, 100404 (2002).
[CrossRef]

Lancis, J.

Lau, E.

E. Lau, Ann. Phys. 6, 417 (1948).
[CrossRef]

Leith, E. N.

Mínguez-Vega, G.

Mlynek, J.

S. Nowak, N. Stuhler, T. Pfau, and J. Mlynek, Phys. Rev. Lett. 81, 5792 (1998).
[CrossRef]

Nowak, S.

S. Nowak, N. Stuhler, T. Pfau, and J. Mlynek, Phys. Rev. Lett. 81, 5792 (1998).
[CrossRef]

Palma, C.

Patorski, K.

K. Patorski, in Progress in Optics, E. Wolf, ed. (Pergamon, London, 1989), Vol. XXVII, p. 3.

Petschinka, J.

B. Brezger, L. Hackermuller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, Phys. Rev. Lett. 88, 100404 (2002).
[CrossRef]

Pfau, T.

S. Nowak, N. Stuhler, T. Pfau, and J. Mlynek, Phys. Rev. Lett. 81, 5792 (1998).
[CrossRef]

Shakher, C.

Stuhler, N.

S. Nowak, N. Stuhler, T. Pfau, and J. Mlynek, Phys. Rev. Lett. 81, 5792 (1998).
[CrossRef]

Tajahuerce, E.

Thakur, M.

Uttenthaler, S.

B. Brezger, L. Hackermuller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, Phys. Rev. Lett. 88, 100404 (2002).
[CrossRef]

Vyas, A. L.

Zeilinger, A.

B. Brezger, L. Hackermuller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, Phys. Rev. Lett. 88, 100404 (2002).
[CrossRef]

Ann. Phys. (1)

E. Lau, Ann. Phys. 6, 417 (1948).
[CrossRef]

Appl. Opt. (4)

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

B. Brezger, L. Hackermuller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, Phys. Rev. Lett. 88, 100404 (2002).
[CrossRef]

S. Nowak, N. Stuhler, T. Pfau, and J. Mlynek, Phys. Rev. Lett. 81, 5792 (1998).
[CrossRef]

Other (2)

K. Patorski, in Progress in Optics, E. Wolf, ed. (Pergamon, London, 1989), Vol. XXVII, p. 3.

B. Dubetsky and P. R. Berman, in Atom Interferometry, P. R. Berman, ed. (Academic, San Diego, Calif., 1997), pp. 407–468.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the ordinary Lau setup.

Fig. 2
Fig. 2

Achromatic Fresnel diffraction assembly. The input plane is effectively illuminated with an axially dispersed source, located from the plane above at distance zσ, which results from the image of broadband point source S through the diffractive doublet DL1DL2.

Fig. 3
Fig. 3

Hybrid diffractive–refractive lens system for generating high-contrast Lau fringes with white light.

Fig. 4
Fig. 4

White-light Lau fringes provided by (a) the optical setup depicted in Fig. 3 and (b) the conventional assembly in Fig. 1. The average cross sections of the Lau fringes in (a) and (b) for the red–green–blue chromatic components are shown in (c) and (d), respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

zo=2nKσd1d2, z=2nσd22d1d1-Kd2.
ABCD=10C/A1A001/A1B/A01.
1a+1s=2Zo.
a+s=-4nKσod1d2.

Metrics