Abstract

We demonstrate slow light via population oscillation in semiconductor quantum-well structures for the first time. A group velocity as low as 9600 m/s is inferred from the experimentally measured dispersive characteristics. The transparency window exhibits a bandwidth as large as 2 GHz.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, Electron. Lett. 38, 1581 (2002).
  2. M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).
  3. P. C. Ku, J. Kim, C. J. Chang-Hasnain, and S. L. Chuang, presented at the OSA Annual Meeting, Tucson, Arizona, September 30–October 2, 2003.
  4. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002), and references therein.
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).
  6. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 9, 1884 (2003).
  7. R. G. Ulbrich and G. W. Fehrenbach, Phys. Rev. Lett. 43, 963 (1979).
  8. J. Hegarty, Phys. Rev. B 25, 4324 (1982).
  9. K. Ogawa, T. Katsuyama, and H. Nakamura, Appl. Phys. Lett. 53, 1077 (1988).
  10. W. W. Chow, H. C. Schneider, and M. C. Phillips, Phys. Rev. A 68, 053802 (2003).
  11. H. Wang, M. Jiang, and D. G. Steel, Phys. Rev. Lett. 65, 1255 (1990).
    [PubMed]
  12. M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
    [CrossRef] [PubMed]
  13. H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, Phys. Rev. Lett. 71, 1261 (1993).
    [CrossRef] [PubMed]

2004

M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).

2003

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 9, 1884 (2003).

W. W. Chow, H. C. Schneider, and M. C. Phillips, Phys. Rev. A 68, 053802 (2003).

2002

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, Electron. Lett. 38, 1581 (2002).

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002), and references therein.

1995

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

1993

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, Phys. Rev. Lett. 71, 1261 (1993).
[CrossRef] [PubMed]

1990

H. Wang, M. Jiang, and D. G. Steel, Phys. Rev. Lett. 65, 1255 (1990).
[PubMed]

1988

K. Ogawa, T. Katsuyama, and H. Nakamura, Appl. Phys. Lett. 53, 1077 (1988).

1982

J. Hegarty, Phys. Rev. B 25, 4324 (1982).

1979

R. G. Ulbrich and G. W. Fehrenbach, Phys. Rev. Lett. 43, 963 (1979).

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).

Binder, R.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, Phys. Rev. Lett. 71, 1261 (1993).
[CrossRef] [PubMed]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 9, 1884 (2003).

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, Electron. Lett. 38, 1581 (2002).

P. C. Ku, J. Kim, C. J. Chang-Hasnain, and S. L. Chuang, presented at the OSA Annual Meeting, Tucson, Arizona, September 30–October 2, 2003.

Chow, W. W.

W. W. Chow, H. C. Schneider, and M. C. Phillips, Phys. Rev. A 68, 053802 (2003).

Chuang, S. L.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 9, 1884 (2003).

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, Electron. Lett. 38, 1581 (2002).

P. C. Ku, J. Kim, C. J. Chang-Hasnain, and S. L. Chuang, presented at the OSA Annual Meeting, Tucson, Arizona, September 30–October 2, 2003.

Fan, S.

M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).

Fehrenbach, G. W.

R. G. Ulbrich and G. W. Fehrenbach, Phys. Rev. Lett. 43, 963 (1979).

Ferrio, K.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, Phys. Rev. Lett. 71, 1261 (1993).
[CrossRef] [PubMed]

Gea-Banacloche, J.

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002), and references therein.

Hegarty, J.

J. Hegarty, Phys. Rev. B 25, 4324 (1982).

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002), and references therein.

Hu, Y. Z.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, Phys. Rev. Lett. 71, 1261 (1993).
[CrossRef] [PubMed]

Jiang, M.

H. Wang, M. Jiang, and D. G. Steel, Phys. Rev. Lett. 65, 1255 (1990).
[PubMed]

Jin, S.-Z.

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

Katsuyama, T.

K. Ogawa, T. Katsuyama, and H. Nakamura, Appl. Phys. Lett. 53, 1077 (1988).

Kim, J.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 9, 1884 (2003).

P. C. Ku, J. Kim, C. J. Chang-Hasnain, and S. L. Chuang, presented at the OSA Annual Meeting, Tucson, Arizona, September 30–October 2, 2003.

Koch, S. W.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, Phys. Rev. Lett. 71, 1261 (1993).
[CrossRef] [PubMed]

Ku, P. C.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 9, 1884 (2003).

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, Electron. Lett. 38, 1581 (2002).

P. C. Ku, J. Kim, C. J. Chang-Hasnain, and S. L. Chuang, presented at the OSA Annual Meeting, Tucson, Arizona, September 30–October 2, 2003.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).

Li, Y.-Q.

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002), and references therein.

Nakamura, H.

K. Ogawa, T. Katsuyama, and H. Nakamura, Appl. Phys. Lett. 53, 1077 (1988).

Ogawa, K.

K. Ogawa, T. Katsuyama, and H. Nakamura, Appl. Phys. Lett. 53, 1077 (1988).

Phillips, M. C.

W. W. Chow, H. C. Schneider, and M. C. Phillips, Phys. Rev. A 68, 053802 (2003).

Schneider, H. C.

W. W. Chow, H. C. Schneider, and M. C. Phillips, Phys. Rev. A 68, 053802 (2003).

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002), and references therein.

Steel, D. G.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, Phys. Rev. Lett. 71, 1261 (1993).
[CrossRef] [PubMed]

H. Wang, M. Jiang, and D. G. Steel, Phys. Rev. Lett. 65, 1255 (1990).
[PubMed]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002), and references therein.

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002), and references therein.

Ulbrich, R. G.

R. G. Ulbrich and G. W. Fehrenbach, Phys. Rev. Lett. 43, 963 (1979).

Wang, H.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, Phys. Rev. Lett. 71, 1261 (1993).
[CrossRef] [PubMed]

H. Wang, M. Jiang, and D. G. Steel, Phys. Rev. Lett. 65, 1255 (1990).
[PubMed]

Xiao, M.

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

Yanik, M. F.

M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).

Appl. Phys. Lett.

K. Ogawa, T. Katsuyama, and H. Nakamura, Appl. Phys. Lett. 53, 1077 (1988).

Electron. Lett.

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, Electron. Lett. 38, 1581 (2002).

Phys. Rev. A

W. W. Chow, H. C. Schneider, and M. C. Phillips, Phys. Rev. A 68, 053802 (2003).

Phys. Rev. B

J. Hegarty, Phys. Rev. B 25, 4324 (1982).

Phys. Rev. Lett.

R. G. Ulbrich and G. W. Fehrenbach, Phys. Rev. Lett. 43, 963 (1979).

H. Wang, M. Jiang, and D. G. Steel, Phys. Rev. Lett. 65, 1255 (1990).
[PubMed]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, Phys. Rev. Lett. 71, 1261 (1993).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002), and references therein.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).

Proc. IEEE

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 9, 1884 (2003).

Other

P. C. Ku, J. Kim, C. J. Chang-Hasnain, and S. L. Chuang, presented at the OSA Annual Meeting, Tucson, Arizona, September 30–October 2, 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: BS1, BS2, nonpolarizing 50/50 beam splitters; D1, D2, identical photodetectors; D3, detector measuring probe transmission; D4, fast photodetector. Lock-in detection is used in combination with a mechanical chopper placed in the probe beam path. A half-wave plate (λ/2) allows for control of the pump polarization. CW, continuous wave; PZT, piezotranslator; f1, f2, focal lengths of plano–convex lenses.

Fig. 2
Fig. 2

(a) Absorption spectra obtained at different pump intensities. From top to bottom the curves are I=0.01,0.05,0.1,0.5,1,5 kW/cm2. Δθ=5°. The probe intensity is 1.5 W/cm2. (b) Pump intensity dependence of the relative depth of absorption dip d. The probe intensities are 1.5 W/cm2 for Δθ=2.5° and 6 W/cm2 for Δθ=5°. The solid curves are best fits to expression (2).

Fig. 3
Fig. 3

(a) Phase delay and absorption experienced by the probe. The slope of the phase delay gives the group velocity. The pump and probe intensities are 1 and 0.09 kW/cm2, respectively. (b) Pump intensity dependence of the slowdown factor of the group velocity as obtained from dispersion (filled circles) and absorption measurements (open circles). The probe intensity is 6 W/cm2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

dΔα/αbac.
dI1+I/I0,
D1-D2exp-αvsL/2cosΔβvsL+ϕLOvs,Δl.
S=cΔαΔv.

Metrics