Abstract

The growth of computing power has greatly improved our ability to extract quantitative information about complicated three-dimensional structures from microscope images. New hardware techniques are also being developed to provide suitable images for these tasks. However, a need exists for synthetic data to test these new developments. The work reported here was motivated by studies of embryo health, but similar needs exist across the field of microscopy. We report a rigorous computer model, based on Maxwell’s equations, that can produce the required synthetic images for bright-field, differential interference contrast, interferometric imaging, and polarimetric imaging. After a description of the algorithm, sample results are presented, followed by a discussion of future plans and applications.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. DiMarzio, A. J. Devaney, and S. C. Lindberg, “Optical quadrature interferometry utilizing polarizing optics,” U.S. patent5,883,717 (March16, 1999).
  2. M. Slayter and H. S. Slayter, Light and Electron Microscopy (Cambridge U. Press, Cambridge, England, 1992).
  3. D. O. Hogenboom, C. A. DiMarzio, T. J. Gaudette, A. J. Devaney, and S. C. Lindberg, Opt. Lett. 23, 783 (1998).
    [CrossRef]
  4. Noniterative Reconstruction of Complex Valued Objects from Two Intensity Measurements. With M. H. Maleki and A. J. DevaneyOpt. Eng. 33, 3243 (1994).
    [CrossRef]
  5. A. J. Devaney, Ultrason. Imaging 4, 336 (1982).
    [CrossRef] [PubMed]
  6. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, J. Microsc. 195, 10 (1999).
    [CrossRef] [PubMed]
  7. A. Dunn and R. Richards-Kortum, IEEE J. Sel. Top. Quantum Electron. 2, 898 (1996).
    [CrossRef]
  8. D. Ghiglia and M. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).

1999 (1)

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, J. Microsc. 195, 10 (1999).
[CrossRef] [PubMed]

1998 (1)

1996 (1)

A. Dunn and R. Richards-Kortum, IEEE J. Sel. Top. Quantum Electron. 2, 898 (1996).
[CrossRef]

1994 (1)

Noniterative Reconstruction of Complex Valued Objects from Two Intensity Measurements. With M. H. Maleki and A. J. DevaneyOpt. Eng. 33, 3243 (1994).
[CrossRef]

1982 (1)

A. J. Devaney, Ultrason. Imaging 4, 336 (1982).
[CrossRef] [PubMed]

Agard, D. A.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, J. Microsc. 195, 10 (1999).
[CrossRef] [PubMed]

Devaney, A. J.

D. O. Hogenboom, C. A. DiMarzio, T. J. Gaudette, A. J. Devaney, and S. C. Lindberg, Opt. Lett. 23, 783 (1998).
[CrossRef]

Noniterative Reconstruction of Complex Valued Objects from Two Intensity Measurements. With M. H. Maleki and A. J. DevaneyOpt. Eng. 33, 3243 (1994).
[CrossRef]

A. J. Devaney, Ultrason. Imaging 4, 336 (1982).
[CrossRef] [PubMed]

C. A. DiMarzio, A. J. Devaney, and S. C. Lindberg, “Optical quadrature interferometry utilizing polarizing optics,” U.S. patent5,883,717 (March16, 1999).

DiMarzio, C. A.

D. O. Hogenboom, C. A. DiMarzio, T. J. Gaudette, A. J. Devaney, and S. C. Lindberg, Opt. Lett. 23, 783 (1998).
[CrossRef]

C. A. DiMarzio, A. J. Devaney, and S. C. Lindberg, “Optical quadrature interferometry utilizing polarizing optics,” U.S. patent5,883,717 (March16, 1999).

Dunn, A.

A. Dunn and R. Richards-Kortum, IEEE J. Sel. Top. Quantum Electron. 2, 898 (1996).
[CrossRef]

Gaudette, T. J.

Ghiglia, D.

D. Ghiglia and M. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).

Gustafsson, M. G. L.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, J. Microsc. 195, 10 (1999).
[CrossRef] [PubMed]

Hogenboom, D. O.

Lindberg, S. C.

D. O. Hogenboom, C. A. DiMarzio, T. J. Gaudette, A. J. Devaney, and S. C. Lindberg, Opt. Lett. 23, 783 (1998).
[CrossRef]

C. A. DiMarzio, A. J. Devaney, and S. C. Lindberg, “Optical quadrature interferometry utilizing polarizing optics,” U.S. patent5,883,717 (March16, 1999).

Maleki, M. H.

Noniterative Reconstruction of Complex Valued Objects from Two Intensity Measurements. With M. H. Maleki and A. J. DevaneyOpt. Eng. 33, 3243 (1994).
[CrossRef]

Pritt, M.

D. Ghiglia and M. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).

Richards-Kortum, R.

A. Dunn and R. Richards-Kortum, IEEE J. Sel. Top. Quantum Electron. 2, 898 (1996).
[CrossRef]

Sedat, J. W.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, J. Microsc. 195, 10 (1999).
[CrossRef] [PubMed]

Slayter, H. S.

M. Slayter and H. S. Slayter, Light and Electron Microscopy (Cambridge U. Press, Cambridge, England, 1992).

Slayter, M.

M. Slayter and H. S. Slayter, Light and Electron Microscopy (Cambridge U. Press, Cambridge, England, 1992).

IEEE J. Sel. Top. Quantum Electron. (1)

A. Dunn and R. Richards-Kortum, IEEE J. Sel. Top. Quantum Electron. 2, 898 (1996).
[CrossRef]

J. Microsc. (1)

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, J. Microsc. 195, 10 (1999).
[CrossRef] [PubMed]

Opt. Eng. (1)

Noniterative Reconstruction of Complex Valued Objects from Two Intensity Measurements. With M. H. Maleki and A. J. DevaneyOpt. Eng. 33, 3243 (1994).
[CrossRef]

Opt. Lett. (1)

Ultrason. Imaging (1)

A. J. Devaney, Ultrason. Imaging 4, 336 (1982).
[CrossRef] [PubMed]

Other (3)

D. Ghiglia and M. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).

C. A. DiMarzio, A. J. Devaney, and S. C. Lindberg, “Optical quadrature interferometry utilizing polarizing optics,” U.S. patent5,883,717 (March16, 1999).

M. Slayter and H. S. Slayter, Light and Electron Microscopy (Cambridge U. Press, Cambridge, England, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Method of computation begins with the FDTD computation to obtain the field throughout the volume. (b) Next the complex field is computed in the pupil plane and (c) propagated to the image plane. (d) The latter two steps are repeated for each image plane.

Fig. 2
Fig. 2

Images of the phase of an image of the simulation and experimental data for a glass sphere in water.

Fig. 3
Fig. 3

Same image as shown in Fig. 2, as a function of x and z, for y=0. Note the focusing effect.

Fig. 4
Fig. 4

Three spheres inside a larger sphere. Indices of refraction for the background, large sphere, and all three smaller spheres are 1.33, 1.35, and 1.37, respectively.

Fig. 5
Fig. 5

Arrangement of mitochondria for a test case. The mitochondria are ellipsoids distributed in three planes to test our ability to locate and resolve their locations.

Fig. 6
Fig. 6

Images of a sphere with objects inside it as shown in Fig. 5. The upper left panel shows the amplitude as a function of x and y for z at 1 µm below focus. The lower left panel shows an x,z plot for y=-3 µm. The upper right panel shows a y,z plot for x=-3 µm. The lower right panel shows some slices in a three-dimensional view.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ux,y,z=2ik expikz-z14πz-z1expikx2+y22z-z1×apertureUAx1,y1,z1expikx12+y122z-z1×expikxx1z-z1expikyy1z-z1dx1dy1.

Metrics