Abstract

We describe a novel imaging technique, second-harmonic-generation optical coherence tomography (SHOCT). This technique combines the spatial resolution and depth penetration of optical coherence tomography (OCT) with the molecular sensitivity of second-harmonic-generation spectroscopy. As a consequence of the coherent detection required for OCT, polarization-resolved images arise naturally. We demonstrate this new technique on a skin sample from the belly of Icelandic salmon, acquiring polarization-resolved SHOCT and OCT images simultaneously.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler, J. Biomed. Opt. 9, 47 (2004).
    [CrossRef] [PubMed]
  2. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-Arunyawee, and J. A. Izatt, Opt. Express 3, 219 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  3. K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, Opt. Lett. 28, 340 (2003).
    [CrossRef] [PubMed]
  4. P. J. Campagnola and L. M. Loew, Nat. Biotechnol. 21, 1356 (2003).
    [CrossRef] [PubMed]
  5. Y. R. Shen, Nonlinear Spectroscopy for Molecular Structure Determination, R. W. Field, E. Hirota, J. P. Maier, and S. Tsuchiya, eds. (Blackwell Science, Malden, Mass., 1998), pp. 249–271.
  6. W. Mohler, A. C. Milliard, and P. J. Campagnola, Methods 29, 97 (2003).
    [CrossRef] [PubMed]
  7. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, Opt. Lett. 17, 151 (1992).
    [CrossRef] [PubMed]
  8. X.-J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, J. Biomed. Opt. 1, 212 (1996).
    [CrossRef] [PubMed]

2004 (1)

W. Drexler, J. Biomed. Opt. 9, 47 (2004).
[CrossRef] [PubMed]

2003 (3)

P. J. Campagnola and L. M. Loew, Nat. Biotechnol. 21, 1356 (2003).
[CrossRef] [PubMed]

W. Mohler, A. C. Milliard, and P. J. Campagnola, Methods 29, 97 (2003).
[CrossRef] [PubMed]

K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, Opt. Lett. 28, 340 (2003).
[CrossRef] [PubMed]

1998 (1)

1996 (1)

X.-J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, J. Biomed. Opt. 1, 212 (1996).
[CrossRef] [PubMed]

1992 (1)

Campagnola, P. J.

P. J. Campagnola and L. M. Loew, Nat. Biotechnol. 21, 1356 (2003).
[CrossRef] [PubMed]

W. Mohler, A. C. Milliard, and P. J. Campagnola, Methods 29, 97 (2003).
[CrossRef] [PubMed]

Chang, M. C.

X.-J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, J. Biomed. Opt. 1, 212 (1996).
[CrossRef] [PubMed]

Choma, M. A.

Drexler, W.

W. Drexler, J. Biomed. Opt. 9, 47 (2004).
[CrossRef] [PubMed]

Fujimoto, J. G.

Hee, M. R.

Huang, D.

Izatt, J. A.

Kulkarni, M. D.

Lin, C. P.

Loew, L. M.

P. J. Campagnola and L. M. Loew, Nat. Biotechnol. 21, 1356 (2003).
[CrossRef] [PubMed]

Milliard, A. C.

W. Mohler, A. C. Milliard, and P. J. Campagnola, Methods 29, 97 (2003).
[CrossRef] [PubMed]

Milner, T. E.

X.-J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, J. Biomed. Opt. 1, 212 (1996).
[CrossRef] [PubMed]

Mohler, W.

W. Mohler, A. C. Milliard, and P. J. Campagnola, Methods 29, 97 (2003).
[CrossRef] [PubMed]

Nelson, J. S.

X.-J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, J. Biomed. Opt. 1, 212 (1996).
[CrossRef] [PubMed]

Puliafito, C. A.

Rao, K. D.

Rollins, A. M.

Shen, Y. R.

Y. R. Shen, Nonlinear Spectroscopy for Molecular Structure Determination, R. W. Field, E. Hirota, J. P. Maier, and S. Tsuchiya, eds. (Blackwell Science, Malden, Mass., 1998), pp. 249–271.

Swanson, E. A.

Ung-Arunyawee, R.

Wang, X.-J.

X.-J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, J. Biomed. Opt. 1, 212 (1996).
[CrossRef] [PubMed]

Yazdanfar, S.

J. Biomed. Opt. (2)

W. Drexler, J. Biomed. Opt. 9, 47 (2004).
[CrossRef] [PubMed]

X.-J. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, J. Biomed. Opt. 1, 212 (1996).
[CrossRef] [PubMed]

Methods (1)

W. Mohler, A. C. Milliard, and P. J. Campagnola, Methods 29, 97 (2003).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

P. J. Campagnola and L. M. Loew, Nat. Biotechnol. 21, 1356 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Other (1)

Y. R. Shen, Nonlinear Spectroscopy for Molecular Structure Determination, R. W. Field, E. Hirota, J. P. Maier, and S. Tsuchiya, eds. (Blackwell Science, Malden, Mass., 1998), pp. 249–271.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the optical system used for SHOCT: BS, cube beam splitter; Obj., objective lens; L’s, lenses; KDP, potassium dihydrogen phosphate crystal; ND, neutral-density filter; DM, dichroic mirror; CF, color filter; PBS, polarizing cube beam splitter. (b) Section of the interferograms formed by the fundamental and the second harmonic. The inset shows the full interferometric signal for both, with an arbitrary offset. (c) SNR plotted as a function of the fundamental power, P1ω. The measured SNR of the second-harmonic signal has a quadratic dependence on P1ω as predicted by Eq. (1).

Fig. 2
Fig. 2

Overlay of the SHOCT image (green–red) on the fundamental OCT image acquired simultaneously over 40 min. The scale bar in the upper right corner is 250 µm×250 µm.

Fig. 3
Fig. 3

(a) SHOCT image of the overlap of three fish scales, recorded with the reference-arm second-harmonic light polarization parallel to the fundamental light polarization. (b) SHOCT image recorded with the reference-arm second-harmonic light polarization perpendicular to the fundamental light polarization. (c) Polarization-independent image derived from (a) and (b). (d) Image of the anisotropy parameter, β. The color scale varies from magenta for -0.5 to green for 1.0. The black space is a result of thresholding out the areas with no signal, defined as having a SNR of 3.0. The parallel and perpendicular images were acquired simultaneously over 35 min. The scale bar in the upper right corner is 125 µm×125 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SNR2ω=ηP2ωR2ω2hνB=ηaP1ω2R2ω2hνB,
β=SNR2ω,-SNR2ω,SNR2ω,+2SNR2ω,.

Metrics