Abstract

We report a hybrid imaging technique capable of performing measurements of the spatial, temporal, and spectral emission characteristics of laser-induced plasmas by use of a single detection system. We apply this technique to study the plasma produced by laser ablation of LiNbO3 and observe phenomena not seen in such detail with standard instruments. These include extreme line broadening up to a few nanometers accompanied by self-absorption near the target surface, and expansion dynamics that differ strongly between the different species. Overall, the wealth of quantitative information provided by this novel technique sheds new light on processes occurring during plasma expansion.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a review see, for instance, the feature issue of Appl. Opt. 42, 5937–6225 (2003).
    [CrossRef]
  2. D. B. Geohegan, in Pulsed Laser Deposition of Thin Films, D. B. Chrisey and G. K. Hubler, eds. (Wiley, New York, 1994), Chap. 5.
  3. D. B. Geohegan, Appl. Phys. Lett. 62, 1463 (1993).
    [CrossRef]
  4. V. Bulatov, L. Xu, and I. Schechter, Anal. Chem. 68, 2966 (1996).
    [CrossRef] [PubMed]
  5. E. Pérez-Tijerina, R. Machorro, and J. Bohigas, Rev. Sci. Instrum. 75, 455 (2004).
    [CrossRef]
  6. S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, J. Appl. Phys. 93, 2380 (2003).
    [CrossRef]
  7. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge U. Press, New York, 1997).
    [CrossRef]
  8. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).
  9. F. J. Gordillo-Vazquez, A. Perea, J. A. Chaos, J. Gonzalo, and C. N. Afonso, Appl. Phys. Lett. 78, 7 (2001).
    [CrossRef]
  10. T. Sakka, T. Nakajima, and Y. H. Ogata, J. Appl. Phys. 92, 2296 (2002).
    [CrossRef]
  11. Bialith image processing software ( www.bialith.com ).

2004 (1)

E. Pérez-Tijerina, R. Machorro, and J. Bohigas, Rev. Sci. Instrum. 75, 455 (2004).
[CrossRef]

2003 (2)

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, J. Appl. Phys. 93, 2380 (2003).
[CrossRef]

For a review see, for instance, the feature issue of Appl. Opt. 42, 5937–6225 (2003).
[CrossRef]

2002 (1)

T. Sakka, T. Nakajima, and Y. H. Ogata, J. Appl. Phys. 92, 2296 (2002).
[CrossRef]

2001 (1)

F. J. Gordillo-Vazquez, A. Perea, J. A. Chaos, J. Gonzalo, and C. N. Afonso, Appl. Phys. Lett. 78, 7 (2001).
[CrossRef]

1996 (1)

V. Bulatov, L. Xu, and I. Schechter, Anal. Chem. 68, 2966 (1996).
[CrossRef] [PubMed]

1993 (1)

D. B. Geohegan, Appl. Phys. Lett. 62, 1463 (1993).
[CrossRef]

Afonso, C. N.

F. J. Gordillo-Vazquez, A. Perea, J. A. Chaos, J. Gonzalo, and C. N. Afonso, Appl. Phys. Lett. 78, 7 (2001).
[CrossRef]

Bindhu, C. V.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, J. Appl. Phys. 93, 2380 (2003).
[CrossRef]

Bohigas, J.

E. Pérez-Tijerina, R. Machorro, and J. Bohigas, Rev. Sci. Instrum. 75, 455 (2004).
[CrossRef]

Bulatov, V.

V. Bulatov, L. Xu, and I. Schechter, Anal. Chem. 68, 2966 (1996).
[CrossRef] [PubMed]

Chaos, J. A.

F. J. Gordillo-Vazquez, A. Perea, J. A. Chaos, J. Gonzalo, and C. N. Afonso, Appl. Phys. Lett. 78, 7 (2001).
[CrossRef]

Gaeris, A. C.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, J. Appl. Phys. 93, 2380 (2003).
[CrossRef]

Geohegan, D. B.

D. B. Geohegan, Appl. Phys. Lett. 62, 1463 (1993).
[CrossRef]

D. B. Geohegan, in Pulsed Laser Deposition of Thin Films, D. B. Chrisey and G. K. Hubler, eds. (Wiley, New York, 1994), Chap. 5.

Gonzalo, J.

F. J. Gordillo-Vazquez, A. Perea, J. A. Chaos, J. Gonzalo, and C. N. Afonso, Appl. Phys. Lett. 78, 7 (2001).
[CrossRef]

Gordillo-Vazquez, F. J.

F. J. Gordillo-Vazquez, A. Perea, J. A. Chaos, J. Gonzalo, and C. N. Afonso, Appl. Phys. Lett. 78, 7 (2001).
[CrossRef]

Griem, H. R.

H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge U. Press, New York, 1997).
[CrossRef]

Harilal, S. S.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, J. Appl. Phys. 93, 2380 (2003).
[CrossRef]

Machorro, R.

E. Pérez-Tijerina, R. Machorro, and J. Bohigas, Rev. Sci. Instrum. 75, 455 (2004).
[CrossRef]

Najmabadi, F.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, J. Appl. Phys. 93, 2380 (2003).
[CrossRef]

Nakajima, T.

T. Sakka, T. Nakajima, and Y. H. Ogata, J. Appl. Phys. 92, 2296 (2002).
[CrossRef]

Ogata, Y. H.

T. Sakka, T. Nakajima, and Y. H. Ogata, J. Appl. Phys. 92, 2296 (2002).
[CrossRef]

Perea, A.

F. J. Gordillo-Vazquez, A. Perea, J. A. Chaos, J. Gonzalo, and C. N. Afonso, Appl. Phys. Lett. 78, 7 (2001).
[CrossRef]

Pérez-Tijerina, E.

E. Pérez-Tijerina, R. Machorro, and J. Bohigas, Rev. Sci. Instrum. 75, 455 (2004).
[CrossRef]

Sakka, T.

T. Sakka, T. Nakajima, and Y. H. Ogata, J. Appl. Phys. 92, 2296 (2002).
[CrossRef]

Schechter, I.

V. Bulatov, L. Xu, and I. Schechter, Anal. Chem. 68, 2966 (1996).
[CrossRef] [PubMed]

Tillack, M. S.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, J. Appl. Phys. 93, 2380 (2003).
[CrossRef]

Xu, L.

V. Bulatov, L. Xu, and I. Schechter, Anal. Chem. 68, 2966 (1996).
[CrossRef] [PubMed]

Anal. Chem. (1)

V. Bulatov, L. Xu, and I. Schechter, Anal. Chem. 68, 2966 (1996).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. B. Geohegan, Appl. Phys. Lett. 62, 1463 (1993).
[CrossRef]

F. J. Gordillo-Vazquez, A. Perea, J. A. Chaos, J. Gonzalo, and C. N. Afonso, Appl. Phys. Lett. 78, 7 (2001).
[CrossRef]

J. Appl. Phys. (2)

T. Sakka, T. Nakajima, and Y. H. Ogata, J. Appl. Phys. 92, 2296 (2002).
[CrossRef]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, J. Appl. Phys. 93, 2380 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

E. Pérez-Tijerina, R. Machorro, and J. Bohigas, Rev. Sci. Instrum. 75, 455 (2004).
[CrossRef]

Other (4)

D. B. Geohegan, in Pulsed Laser Deposition of Thin Films, D. B. Chrisey and G. K. Hubler, eds. (Wiley, New York, 1994), Chap. 5.

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge U. Press, New York, 1997).
[CrossRef]

H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).

Bialith image processing software ( www.bialith.com ).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for time-resolved plasma imaging with spectral resolution of laser-induced plasmas.

Fig. 2
Fig. 2

Time-gated images of the plasma expanding from the surface of a LiNbO3 target (z=0 mm), each obtained by irradiation with a single laser pulse by use of (a), (b) the 2D spatial imaging mode and the (c), (d) 1D spatial and spectral imaging mode. The gate width was constant (Δt=30 ns), and the gate delay with respect to the laser pulse was changed from (a), (c) t1=50 ns to (b), (d) t2=140 ns. The images are represented in a logarithmic intensity scale to compensate for the large differences in emission intensities between the different species (Li*, O*, and Nb*).

Fig. 3
Fig. 3

(a) Time-integrated 1D spatial and spectral high-resolution image of the expanding plasma obtained by irradiation with a single laser pulse. The inset shows intensity profiles of the Li* line at 610.3 nm at a distance of 0.62 mm (dashed curve) and 10 mm (solid curve). The arrow indicates the region of self-absorption (small dark triangle). (b) Linewidth of the 610.3-nm line determined from the data in (a) as a function of target distance z. The shaded area very close to the surface (0.5–0 mm) indicates the region of self-absorption, and for z>2 mm the values are limited by the spectral resolution of our system.

Metrics