Abstract

Femtosecond laser pulse shaping techniques have been restricted to propagating transverse electromagnetic waves. We present a scheme for pulse shaping of optical near fields based on the excitation of longitudinal electromagnetic fields with polarization-shaped light pulses. By solving Maxwell’s equations for a model nanostructure, i.e., a scanning tunneling microscope tip, with help from the boundary-element method, we demonstrate that the electric field vector oscillates in a complex yet controllable fashion in three dimensions. Many applications are envisioned because literally another dimension in the optimal control of light–matter interaction is accessible.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  2. S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, New York, 2000).
  3. T. Brixner and G. Gerber, ChemPhysChem 4, 418 (2003).
    [CrossRef] [PubMed]
  4. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, Opt. Lett. 15, 326 (1990).
    [CrossRef]
  5. M. M. Wefers and K. A. Nelson, Opt. Lett. 20, 1047 (1995).
    [CrossRef]
  6. J. C. Vaughan, T. Feurer, and K. A. Nelson, Opt. Lett. 28, 2408 (2003).
    [CrossRef] [PubMed]
  7. T. Brixner and G. Gerber, Opt. Lett. 26, 557 (2001).
    [CrossRef]
  8. T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, Appl. Phys. B 74, S133 (2002).
    [CrossRef]
  9. T. Brixner, Appl. Phys. B 76, 531 (2003).
    [CrossRef]
  10. D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
    [CrossRef]
  11. E. J. Sánchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
    [CrossRef]
  12. F. J. García de Abajo and A. Howie, Phys. Rev. Lett. 80, 5180 (1998).
    [CrossRef]
  13. F. J. García de Abajo and A. Howie, Phys. Rev. B 65, 115418 (2002).
    [CrossRef]
  14. T. Brixner, J. Schneider, W. Pfeiffer, and F. J. García de Abajo, in Ultrafast Phenomena XIV, T. Kobayashi, T. Okada, T. Kobayashi, K. A. Nelson, and S. De Silvestri, eds. (Springer-Verlag, Berlin, to be published).
  15. K. Hoki, L. González, and Y. Fujimura, J. Chem. Phys. 116, 8799 (2002).
  16. A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, Opt. Lett. 28, 1686 (2003).
    [CrossRef] [PubMed]
  17. M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 067402 (2002).
    [CrossRef]
  18. T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003).
    [CrossRef]

2003 (6)

T. Brixner and G. Gerber, ChemPhysChem 4, 418 (2003).
[CrossRef] [PubMed]

T. Brixner, Appl. Phys. B 76, 531 (2003).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

J. C. Vaughan, T. Feurer, and K. A. Nelson, Opt. Lett. 28, 2408 (2003).
[CrossRef] [PubMed]

A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, Opt. Lett. 28, 1686 (2003).
[CrossRef] [PubMed]

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003).
[CrossRef]

2002 (4)

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, Appl. Phys. B 74, S133 (2002).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef]

F. J. García de Abajo and A. Howie, Phys. Rev. B 65, 115418 (2002).
[CrossRef]

K. Hoki, L. González, and Y. Fujimura, J. Chem. Phys. 116, 8799 (2002).

2001 (1)

2000 (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

1999 (1)

E. J. Sánchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
[CrossRef]

1998 (1)

F. J. García de Abajo and A. Howie, Phys. Rev. Lett. 80, 5180 (1998).
[CrossRef]

1995 (1)

1990 (1)

Bergman, D. J.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef]

Brixner, T.

T. Brixner, Appl. Phys. B 76, 531 (2003).
[CrossRef]

T. Brixner and G. Gerber, ChemPhysChem 4, 418 (2003).
[CrossRef] [PubMed]

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, Appl. Phys. B 74, S133 (2002).
[CrossRef]

T. Brixner and G. Gerber, Opt. Lett. 26, 557 (2001).
[CrossRef]

T. Brixner, J. Schneider, W. Pfeiffer, and F. J. García de Abajo, in Ultrafast Phenomena XIV, T. Kobayashi, T. Okada, T. Kobayashi, K. A. Nelson, and S. De Silvestri, eds. (Springer-Verlag, Berlin, to be published).

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef]

Feurer, T.

Fujimura, Y.

K. Hoki, L. González, and Y. Fujimura, J. Chem. Phys. 116, 8799 (2002).

García de Abajo, F. J.

F. J. García de Abajo and A. Howie, Phys. Rev. B 65, 115418 (2002).
[CrossRef]

F. J. García de Abajo and A. Howie, Phys. Rev. Lett. 80, 5180 (1998).
[CrossRef]

T. Brixner, J. Schneider, W. Pfeiffer, and F. J. García de Abajo, in Ultrafast Phenomena XIV, T. Kobayashi, T. Okada, T. Kobayashi, K. A. Nelson, and S. De Silvestri, eds. (Springer-Verlag, Berlin, to be published).

Gerber, G.

T. Brixner and G. Gerber, ChemPhysChem 4, 418 (2003).
[CrossRef] [PubMed]

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, Appl. Phys. B 74, S133 (2002).
[CrossRef]

T. Brixner and G. Gerber, Opt. Lett. 26, 557 (2001).
[CrossRef]

González, L.

K. Hoki, L. González, and Y. Fujimura, J. Chem. Phys. 116, 8799 (2002).

Hoki, K.

K. Hoki, L. González, and Y. Fujimura, J. Chem. Phys. 116, 8799 (2002).

Howie, A.

F. J. García de Abajo and A. Howie, Phys. Rev. B 65, 115418 (2002).
[CrossRef]

F. J. García de Abajo and A. Howie, Phys. Rev. Lett. 80, 5180 (1998).
[CrossRef]

Kawazoe, T.

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003).
[CrossRef]

Klimov, V. I.

Kobayashi, K.

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003).
[CrossRef]

Krampert, G.

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, Appl. Phys. B 74, S133 (2002).
[CrossRef]

Leaird, D. E.

Mikhailovsky, A. A.

Nelson, K. A.

Niklaus, P.

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, Appl. Phys. B 74, S133 (2002).
[CrossRef]

Novotny, L.

E. J. Sánchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
[CrossRef]

Ohtsu, M.

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003).
[CrossRef]

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

Patel, J. S.

Petruska, M. A.

Pfeiffer, W.

T. Brixner, J. Schneider, W. Pfeiffer, and F. J. García de Abajo, in Ultrafast Phenomena XIV, T. Kobayashi, T. Okada, T. Kobayashi, K. A. Nelson, and S. De Silvestri, eds. (Springer-Verlag, Berlin, to be published).

Rice, S. A.

S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, New York, 2000).

Sánchez, E. J.

E. J. Sánchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
[CrossRef]

Sangu, S.

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003).
[CrossRef]

Schneider, J.

T. Brixner, J. Schneider, W. Pfeiffer, and F. J. García de Abajo, in Ultrafast Phenomena XIV, T. Kobayashi, T. Okada, T. Kobayashi, K. A. Nelson, and S. De Silvestri, eds. (Springer-Verlag, Berlin, to be published).

Silberberg, Y.

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

Stockman, M. I.

A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, Opt. Lett. 28, 1686 (2003).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef]

Vaughan, J. C.

Wefers, M. M.

Weiner, A. M.

Wullert, J. R.

Xie, X. S.

E. J. Sánchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
[CrossRef]

Zhao, M.

S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, New York, 2000).

Appl. Phys. B (2)

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, Appl. Phys. B 74, S133 (2002).
[CrossRef]

T. Brixner, Appl. Phys. B 76, 531 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003).
[CrossRef]

ChemPhysChem (1)

T. Brixner and G. Gerber, ChemPhysChem 4, 418 (2003).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

K. Hoki, L. González, and Y. Fujimura, J. Chem. Phys. 116, 8799 (2002).

Opt. Lett. (5)

Phys. Rev. B (1)

F. J. García de Abajo and A. Howie, Phys. Rev. B 65, 115418 (2002).
[CrossRef]

Phys. Rev. Lett. (4)

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

E. J. Sánchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).
[CrossRef]

F. J. García de Abajo and A. Howie, Phys. Rev. Lett. 80, 5180 (1998).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Other (2)

S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, New York, 2000).

T. Brixner, J. Schneider, W. Pfeiffer, and F. J. García de Abajo, in Ultrafast Phenomena XIV, T. Kobayashi, T. Okada, T. Kobayashi, K. A. Nelson, and S. De Silvestri, eds. (Springer-Verlag, Berlin, to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Proposed experimental arrangement. A femtosecond polarization pulse shaper (right side) manipulates the spectral phases of two polarization components 1 and 2 in 128 independent frequency intervals (from 670 to 890 nm). These laser pulses with time-varying but transverse polarization states are irradiated as a plane wave onto the near-field geometry (left side, material: gold) with sample radius b=25 nm, tip radius a=10 nm, cone half-angle α=5°, length L=1500 nm, and tip–sample separation d=5 nm. The local electric field thus acquires two transverse and one longitudinal polarization components and is calculated at any point Pr by solving Maxwell’s equations with help from the boundary-element method. STM, scanning tunneling microscope.

Fig. 2
Fig. 2

Far-field evolution. The 12-fs input laser pulse has a Gaussian spectrum, but simple polynomial phase structures (left) lead to a time dependence of the transverse polarization (right), shown over a time interval of 100 fs. More-complex evolutions are possible as well.

Fig. 3
Fig. 3

Near-field evolution. The electric field at r/nm=-20,20,27.5 contains three polarization components: (a) the temporal evolution of Ex (solid curve), Ey (dashed curve), and Ez (dotted curve). Parametric plots (b)–(e) show how the electric field vector oscillates in a complex yet controllable fashion in 3D space (black curves) as well as in planar projections (gray curves).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Elr,ω=i=12Axir,ωAyir,ωAzir,ωIiω1/2expiΦiω,

Metrics